

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-registration 1.0 documentation

django-registration 1.0 documentation

This documentation covers the 1.0 release of
django-registration, a simple but extensible application providing
user registration functionality for Django [http://www.djangoproject.com]-powered websites.

Although nearly all aspects of the registration process are
customizable, out-of-the-box support is provided for two common use
cases:

	Two-phase registration, consisting of initial signup followed by a
confirmation email with instructions for activating the new account.

	One-phase registration, where a user signs up and is immediately
active and logged in.

To get up and running quickly, consult the quick-start guide, which describes all the necessary steps to install
django-registration and configure it for the default workflow. For
more detailed information, including how to customize the registration
process (and support for alternate registration systems), read through
the documentation listed below.

If you are upgrading from a previous release, please read the
upgrade guide for information on what’s changed.

Contents:

	Quick start guide

	Release notes

	Upgrade guide

	The default backend

	The “simple” (one-step) backend

	Forms for user registration

	Registration views

	Custom signals used by django-registration

	Frequently-asked questions

See also

	Django’s authentication documentation [http://docs.djangoproject.com/en/dev/topics/auth/]; Django’s
authentication system is used by django-registration’s default
configuration.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

Quick start guide

Before installing django-registration, you’ll need to have a copy of
Django [http://www.djangoproject.com] already installed. For the
1.0 release, Django 1.4 or newer is required.

For further information, consult the Django download page [http://www.djangoproject.com/download/], which offers convenient
packaged downloads and installation instructions.

Installing django-registration

There are several ways to install django-registration:

	Automatically, via a package manager.

	Manually, by downloading a copy of the release package and
installing it yourself.

	Manually, by performing a Mercurial checkout of the latest code.

It is also highly recommended that you learn to use virtualenv [http://pypi.python.org/pypi/virtualenv] for development and
deployment of Python software; virtualenv provides isolated Python
environments into which collections of software (e.g., a copy of
Django, and the necessary settings and applications for deploying a
site) can be installed, without conflicting with other installed
software. This makes installation, testing, management and deployment
far simpler than traditional site-wide installation of Python
packages.

Automatic installation via a package manager

Several automatic package-installation tools are available for Python;
the recommended one is pip [http://pip.openplans.org/].

Using pip, type:

pip install django-registration

It is also possible that your operating system distributor provides a
packaged version of django-registration (for example, Debian
GNU/Linux [http://debian.org/] provides a package, installable via
apt-get-install python-django-registration). Consult your
operating system’s package list for details, but be aware that
third-party distributions may be providing older versions of
django-registration, and so you should consult the documentation which
comes with your operating system’s package.

Manual installation from a downloaded package

If you prefer not to use an automated package installer, you can
download a copy of django-registration and install it manually. The
latest release package can be downloaded from django-registration’s
listing on the Python Package Index [http://pypi.python.org/pypi/django-registration/].

Once you’ve downloaded the package, unpack it (on most operating
systems, simply double-click; alternately, type tar zxvf
django-registration-0.9.tar.gz at a command line on Linux, Mac OS X
or other Unix-like systems). This will create the directory
django-registration-0.9, which contains the setup.py
installation script. From a command line in that directory, type:

python setup.py install

Note that on some systems you may need to execute this with
administrative privileges (e.g., sudo python setup.py install).

Manual installation from a Mercurial checkout

If you’d like to try out the latest in-development code, you can
obtain it from the django-registration repository, which is hosted at
Bitbucket [http://bitbucket.org/] and uses Mercurial [http://www.selenic.com/mercurial/wiki/] for version control. To
obtain the latest code and documentation, you’ll need to have
Mercurial installed, at which point you can type:

hg clone http://bitbucket.org/ubernostrum/django-registration/

You can also obtain a copy of a particular release of
django-registration by specifying the -r argument to hg clone;
each release is given a tag of the form vX.Y, where “X.Y” is the
release number. So, for example, to check out a copy of the 1.0
release, type:

hg clone -r v|version| http://bitbucket.org/ubernostrum/django-registration/

In either case, this will create a copy of the django-registration
Mercurial repository on your computer; you can then add the
django-registration directory inside the checkout your Python
import path, or use the setup.py script to install as a package.

Basic configuration and use

Once installed, you can add django-registration to any Django-based
project you’re developing. The default setup will enable user
registration with the following workflow:

	A user signs up for an account by supplying a username, email
address and password.

	From this information, a new User object is created, with its
is_active field set to False. Additionally, an activation
key is generated and stored, and an email is sent to the user
containing a link to click to activate the account.

	Upon clicking the activation link, the new account is made active
(the is_active field is set to True); after this, the user
can log in.

Note that the default workflow requires django.contrib.auth to be
installed, and it is recommended that django.contrib.sites be
installed as well. You will also need to have a working mail server
(for sending activation emails), and provide Django with the necessary
settings to make use of this mail server (consult Django’s
email-sending documentation [http://docs.djangoproject.com/en/dev/topics/email/] for details).

Required settings

Begin by adding registration to the INSTALLED_APPS setting of
your project, and specifying one additional setting:

	ACCOUNT_ACTIVATION_DAYS

	This is the number of days users will have to activate their
accounts after registering. If a user does not activate within
that period, the account will remain permanently inactive and may
be deleted by maintenance scripts provided in django-registration.

For example, you might have something like the following in your
Django settings file:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.sites',
 'registration',
 # ...other installed applications...
)

ACCOUNT_ACTIVATION_DAYS = 7 # One-week activation window; you may, of course, use a different value.

Once you’ve done this, run manage.py syncdb to install the model
used by the default setup.

Setting up URLs

The default backend includes a Django
URLconf which sets up URL patterns for the views in
django-registration, as well as several useful views in
django.contrib.auth (e.g., login, logout, password
change/reset). This URLconf can be found at
registration.backends.default.urls, and so can simply be included
in your project’s root URL configuration. For example, to place the
URLs under the prefix /accounts/, you could add the following to
your project’s root URLconf:

(r'^accounts/', include('registration.backends.default.urls')),

Users would then be able to register by visiting the URL
/accounts/register/, login (once activated) at
/accounts/login/, etc.

Another URLConf is also provided – at registration.auth_urls
– which just handles the Django auth views, should you want to put
those at a different location.

Required templates

In the default setup, you will need to create several templates
required by django-registration, and possibly additional templates
required by views in django.contrib.auth. The templates requires
by django-registration are as follows; note that, with the exception
of the templates used for account activation emails, all of these are
rendered using a RequestContext and so will also receive any
additional variables provided by context processors [http://docs.djangoproject.com/en/dev/ref/templates/api/#id1].

registration/registration_form.html

Used to show the form users will fill out to register. By default, has
the following context:

	form

	The registration form. This will be an instance of some subclass
of django.forms.Form; consult Django’s forms documentation [http://docs.djangoproject.com/en/dev/topics/forms/] for
information on how to display this in a template.

registration/registration_complete.html

Used after successful completion of the registration form. This
template has no context variables of its own, and should simply inform
the user that an email containing account-activation information has
been sent.

registration/activate.html

Used if account activation fails. With the default setup, has the following context:

	activation_key

	The activation key used during the activation attempt.

registration/activation_complete.html

Used after successful account activation. This template has no context
variables of its own, and should simply inform the user that their
account is now active.

registration/activation_email_subject.txt

Used to generate the subject line of the activation email. Because the
subject line of an email must be a single line of text, any output
from this template will be forcibly condensed to a single line before
being used. This template has the following context:

	activation_key

	The activation key for the new account.

	expiration_days

	The number of days remaining during which the account may be
activated.

	site

	An object representing the site on which the user registered;
depending on whether django.contrib.sites is installed, this
may be an instance of either django.contrib.sites.models.Site
(if the sites application is installed) or
django.contrib.sites.models.RequestSite (if not). Consult the
documentation for the Django sites framework [http://docs.djangoproject.com/en/dev/ref/contrib/sites/] for
details regarding these objects’ interfaces.

registration/activation_email.txt

Used to generate the body of the activation email. Should display a
link the user can click to activate the account. This template has the
following context:

	activation_key

	The activation key for the new account.

	expiration_days

	The number of days remaining during which the account may be
activated.

	site

	An object representing the site on which the user registered;
depending on whether django.contrib.sites is installed, this
may be an instance of either django.contrib.sites.models.Site
(if the sites application is installed) or
django.contrib.sites.models.RequestSite (if not). Consult the
documentation for the Django sites framework [http://docs.djangoproject.com/en/dev/ref/contrib/sites/] for
details regarding these objects’ interfaces.

Note that the templates used to generate the account activation email
use the extension .txt, not .html. Due to widespread antipathy
toward and interoperability problems with HTML email,
django-registration defaults to plain-text email, and so these
templates should simply output plain text rather than HTML.

To make use of the views from django.contrib.auth (which are set
up for you by the default URLconf mentioned above), you will also need
to create the templates required by those views. Consult the
documentation for Django’s authentication system [http://docs.djangoproject.com/en/dev/topics/auth/] for details
regarding these templates.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

Release notes

The 1.0 release of django-registration represents a complete
rewrite of the previous codebase. For information on upgrading,
consult the upgrade guide.

The backend system

The largest overall change is that in place of the monolithic backend
classes and function-based views found in django-registration 0.8, in
1.0 all views are class-based. A “backend” now consists of,
typically, one or two subclasses of the built-in base views.

Implementing these as class-based views allows for far simpler
configuration and customization, without the overhead involved in
supporting large numbers of optional keyword arguments to
function-based views, or the need to provide a separate class-based
infrastructure for implementing the logic of registration.

Notably, this implementation is also completely backwards-compatible
for users of django-registration 0.8 who simply used the recommended
default URLConf for one of the supplied backends; those URLConfs exist
in the same locations, and have been rewritten to point to the
appropriate class-based views with the appropriate options.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

Upgrade guide

The 1.0 release of django-registration represents a complete
rewrite of the previous codebase, and introduces several new features
which greatly enhance the customizability and extensibility of
django-registration. Whenever possible, changes were made in ways
which preserve backwards compatibility with previous releases, but
some changes to existing installations will still be required in order
to upgrade to 1.0. This document provides a summary of those
changes, and of the new features available in the 1.0 release.

Django version requirement

As of 1.0, django-registration requires Django 1.4 or newer;
older Django releases may work, but are officially unsupported.

Backwards-incompatible changes

The entire codebase was rewritten for 1.0, switching from
function-based views accepting keyword arguments to class-based views
with overridable attributes. Whether this affects you will depend on
how you were using django-registration previously:

	If you’re upgrading from an older release of django-registration,
and if you were using the default setup (i.e., the included default
URLconf and no custom URL patterns or custom arguments to views),
you do not need to make any changes.

	If you had customized django-registration by writing your own
backend, you will now need to implement that backend by subclassing
the built-in views and overriding or implementing
your customizations appropriately. Much of this is similar to
previous backend class implementations, so minimal changes to
existing code should be required; the primary change is that the
backend classes now are the views, so if you had multiple views
(e.g., one for signup and one for activation) your backend will now
consist of multiple classes – one class per view – rather than one
class total.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

The default backend

A default registration backend` is bundled with django-registration,
as the module registration.backends.default, and implements a
simple two-step workflow in which a new user first registers, then
confirms and activates the new account by following a link sent to the
email address supplied during registration.

Default behavior and configuration

To make use of this backend, simply include the URLConf
registration.backends.default.urls at whatever location you choose
in your URL hierarchy.

This backend makes use of the following settings:

	ACCOUNT_ACTIVATION_DAYS

	This is the number of days users will have to activate their
accounts after registering. Failing to activate during that period
will leave the account inactive (and possibly subject to
deletion). This setting is required, and must be an integer.

	REGISTRATION_OPEN

	A boolean (either True or False) indicating whether
registration of new accounts is currently permitted. This setting
is optional, and a default of True will be assumed if it is
not supplied.

By default, this backend uses
registration.forms.RegistrationForm as its form class for
user registration; this can be overridden by passing the keyword
argument form_class to the register()
view.

Two views are provided:
registration.backends.default.views.RegistrationView and
registration.backends.default.views.ActivationView. These views
subclass django-registration’s base
RegistrationView and
ActivationView, respectively, and
implement the two-step registration/activation process.

Upon successful registration – not activation – the default redirect
is to the URL pattern named registration_complete; this can be
overridden in subclasses by changing
success_url or
implementing
get_success_url()

Upon successful activation, the default redirect is to the URL pattern
named registration_activation_complete; this can be overridden in
subclasses by implementing
get_success_url().

How account data is stored for activation

During registration, a new instance of
django.contrib.auth.models.User is created to represent the new
account, with the is_active field set to False. An email is
then sent to the email address of the account, containing a link the
user must click to activate the account; at that point the
is_active field is set to True, and the user may log in
normally.

Activation is handled by generating and storing an activation key in
the database, using the following model:

	
class registration.models.RegistrationProfile

	A simple representation of the information needed to activate a new
user account. This is not a user profile; it simply provides a
place to temporarily store the activation key and determine whether
a given account has been activated.

Has the following fields:

	
user

	A ForeignKey to django.contrib.auth.models.User,
representing the user account for which activation information
is being stored.

	
activation_key

	A 40-character CharField, storing the activation key for the
account. Initially, the activation key is the hexdigest of a
SHA1 hash; after activation, this is reset to ACTIVATED.

Additionally, one class attribute exists:

	
ACTIVATED

	A constant string used as the value of activation_key
for accounts which have been activated.

And the following methods:

	
activation_key_expired()

	Determines whether this account’s activation key has expired,
and returns a boolean (True if expired, False
otherwise). Uses the following algorithm:

	If activation_key is ACTIVATED, the account
has already been activated and so the key is considered to
have expired.

	Otherwise, the date of registration (obtained from the
date_joined field of user) is compared to the
current date; if the span between them is greater than the
value of the setting ACCOUNT_ACTIVATION_DAYS, the key is
considered to have expired.

	Return type:	bool

	
send_activation_email(site)

	Sends an activation email to the address of the account.

The activation email will make use of two templates:
registration/activation_email_subject.txt and
registration/activation_email.txt, which are used for the
subject of the email and the body of the email,
respectively. Each will receive the following context:

	activation_key

	The value of activation_key.

	expiration_days

	The number of days the user has to activate, taken from the
setting ACCOUNT_ACTIVATION_DAYS.

	site

	An object representing the site on which the account was
registered; depending on whether django.contrib.sites is
installed, this may be an instance of either
django.contrib.sites.models.Site (if the sites
application is installed) or
django.contrib.sites.models.RequestSite (if
not). Consult the documentation for the Django sites
framework [http://docs.djangoproject.com/en/dev/ref/contrib/sites/]
for details regarding these objects’ interfaces.

Because email subjects must be a single line of text, the
rendered output of registration/activation_email_subject.txt
will be forcibly condensed to a single line.

	Parameters:	site (django.contrib.sites.models.Site or
django.contrib.sites.models.RequestSite) – An object representing the site on which account
was registered.

	Return type:	None

Additionally, RegistrationProfile has a custom manager
(accessed as RegistrationProfile.objects):

	
class registration.models.RegistrationManager

	This manager provides several convenience methods for creating and
working with instances of RegistrationProfile:

	
activate_user(activation_key)

	Validates activation_key and, if valid, activates the
associated account by setting its is_active field to
True. To prevent re-activation of accounts, the
activation_key of the
RegistrationProfile for the account will be set to
RegistrationProfile.ACTIVATED after successful
activation.

Returns the User instance representing the account if
activation is successful, False otherwise.

	Parameters:	activation_key (string, a 40-character SHA1 hexdigest) – The activation key to use for the
activation.

	Return type:	User or bool

	
delete_expired_users()

	Removes expired instances of RegistrationProfile, and
their associated user accounts, from the database. This is
useful as a periodic maintenance task to clean out accounts
which registered but never activated.

Accounts to be deleted are identified by searching for instances
of RegistrationProfile with expired activation keys and
with associated user accounts which are inactive (have their
is_active field set to False). To disable a user account
without having it deleted, simply delete its associated
RegistrationProfile; any User which does not have
an associated RegistrationProfile will not be deleted.

A custom management command is provided which will execute this
method, suitable for use in cron jobs or other scheduled
maintenance tasks: manage.py cleanupregistration.

	Return type:	None

	
create_inactive_user(username, email, password, site[, send_email])

	Creates a new, inactive user account and an associated instance
of RegistrationProfile, sends the activation email and
returns the new User object representing the account.

	Parameters:	
	username (string) – The username to use for the new account.

	email (string) – The email address to use for the new account.

	password (string) – The password to use for the new account.

	site (django.contrib.sites.models.Site or
django.contrib.sites.models.RequestSite) – An object representing the site on which the
account is being registered.

	send_email (bool) – If True, the activation email will be
sent to the account (by calling
RegistrationProfile.send_activation_email()). If
False, no email will be sent (but the account will still
be inactive)

	Return type:	User

	
create_profile(user)

	Creates and returns a RegistrationProfile instance for
the account represented by user.

The RegistrationProfile created by this method will have its
activation_key set to a SHA1 hash
generated from a combination of the account’s username and a
random salt.

	Parameters:	user (User) – The user account; an instance of
django.contrib.auth.models.User.

	Return type:	RegistrationProfile

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

The “simple” (one-step) backend

As an alternative to the default backend, and
an example of writing alternate workflows, django-registration bundles
a one-step registration system in
registration.backend.simple. This backend’s workflow is
deliberately as simple as possible:

	A user signs up by filling out a registration form.

	The user’s account is created and is active immediately, with no
intermediate confirmation or activation step.

	The new user is logged in immediately.

Configuration

To use this backend, simply include the URLconf
registration.backends.simple.urls somewhere in your site’s own URL
configuration. For example:

(r'^accounts/', include('registration.backends.simple.urls')),

No additional settings are required, but one optional setting is
supported:

	REGISTRATION_OPEN

	A boolean (either True or False) indicating whether
registration of new accounts is currently permitted. A default of
True will be assumed if this setting is not supplied.

Upon successful registration, the default redirect is to the URL
specified by the get_absolute_url() method of the newly-created
User object; by default, this will be /users/<username>/,
although it can be overridden by implementing
get_success_url() on a
subclass of registration.backends.simple.views.RegistrationView.

The default form class used for account registration will be
registration.forms.RegistrationForm, although this can be
overridden by supplying a custom URL pattern for the registration view
and passing the keyword argument form_class, or by subclassing
registration.backends.simple.views.RegistrationView and either
overriding form_class or implementing
get_form_class().

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

Forms for user registration

Several form classes are provided with django-registration, covering
common cases for gathering account information and implementing common
constraints for user registration. These forms were designed with
django-registration’s default backend in
mind, but may also be useful in other situations.

	
class registration.forms.RegistrationForm

	A simple form for registering an account. Has the following fields,
all of which are required:

	username

	The username to use for the new account. This is represented as
a text input which validates that the username is unique,
consists entirely of alphanumeric characters and underscores
and is at most 30 characters in length.

	email

	The email address to use for the new account. This is
represented as a text input which accepts email addresses up to
75 characters in length.

	password1

	The password to use for the new account. This represented as a
password input (input type="password" in the rendered HTML).

	password2

	The password to use for the new account. This represented as a
password input (input type="password" in the rendered HTML).

The constraints on usernames and email addresses match those
enforced by Django’s default authentication backend for instances
of django.contrib.auth.models.User. The repeated entry of the
password serves to catch typos.

Because it does not apply to any single field of the form, the
validation error for mismatched passwords is attached to the form
itself, and so must be accessed via the form’s
non_field_errors() method.

	
class registration.forms.RegistrationFormTermsOfService

	A subclass of RegistrationForm which adds one additional,
required field:

	tos

	A checkbox indicating agreement to the site’s terms of
service/user agreement.

	
class registration.forms.RegistrationFormUniqueEmail

	A subclass of RegistrationForm which enforces uniqueness
of email addresses in addition to uniqueness of usernames.

	
class registration.forms.RegistrationFormNoFreeEmail

	A subclass of RegistrationForm which disallows
registration using addresses from some common free email
providers. This can, in some cases, cut down on automated
registration by spambots.

By default, the following domains are disallowed for email
addresses:

	aim.com

	aol.com

	email.com

	gmail.com

	googlemail.com

	hotmail.com

	hushmail.com

	msn.com

	mail.ru

	mailinator.com

	live.com

	yahoo.com

To change this, subclass this form and set the class attribute
bad_domains to a list of domains you wish to disallow.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

Registration views

In order to allow the utmost flexibility in customizing and supporting
different workflows, django-registration makes use of Django’s support
for class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/]. Included
in django-registration are two base classes which can be subclassed to
implement whatever workflow is required.

	
class registration.views.RegistrationView

	A subclass of Django’s FormView [https://docs.djangoproject.com/en/1.5/ref/class-based-views/generic-editing/#formview],
which provides the infrastructure for supporting user registration.

Since it’s a subclass of FormView, RegistrationView has all
the usual attributes and methods you can override; however, there
is one key difference. In order to support additional
customization, RegistrationView also passes the HttpRequest
to most of its methods. Subclasses do need to take this into
account, and accept the request argument.

Useful places to override or customize on a RegistrationView
subclass are:

	
disallowed_url

	The URL to redirect to when registration is disallowed. Should
be a string, the name of a URL pattern [https://docs.djangoproject.com/en/dev/topics/http/urls/#naming-url-patterns]. Default
value is registration_disallowed.

	
form_class

	The form class to use for user registration. Can be overridden
on a per-request basis (see below). Should be the actual class
object; by default, this class is
registration.forms.RegistrationForm.

	
success_url

	The URL to redirect to after successful registration. Should be
a string, the name of a URL pattern, or a 3-tuple of arguments
suitable for passing to Django’s redirect shortcut
<https://docs.djangoproject.com/en/dev/topics/http/shortcuts/#redirect>. Can
be overridden on a per-request basis (see below). Default value
is None, so that per-request customization is used instead.

	
template_name

	The template to use for user registration. Should be a
string. Default value is
registration/registration_form.html.

	
get_form_class(request)

	Select a form class to use on a per-request basis. If not
overridden, will use form_class. Should be the actual
class object.

	
get_success_url(request, user)

	Return a URL to redirect to after successful registration, on a
per-request or per-user basis. If not overridden, will use
success_url. Should be a string, the name of a URL
pattern, or a 3-tuple of arguments suitable for passing to
Django’s redirect shortcut.

	
registration_allowed(request)

	Should return a boolean indicating whether user registration is
allowed, either in general or for this specific request.

	
register(request, **cleaned_data)

	Actually perform the business of registering a new
user. Receives both the HttpRequest object and all of the
cleaned_data from the registration form. Should return the
new user who was just registered.

	
class registration.views.ActivationView

	A subclass of Django’s TemplateView [https://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#templateview]
which provides support for a separate account-activation step, in
workflows which require that.

Useful places to override or customize on an ActivationView
subclass are:

	
template_name

	The template to use for user activation. Should be a
string. Default value is registration/activate.html.

	
activate(request, *args, **kwargs)

	Actually perform the business of activating a user
account. Receives the HttpRequest object and any positional
or keyword arguments passed to the view. Should return the
activated user account if activation is successful, or any value
which evaluates False in boolean context if activation is
unsuccessful.

	
get_success_url(request, user)

	Return a URL to redirect to after successful registration, on a
per-request or per-user basis. If not overridden, will use
success_url. Should be a string, the name of a URL
pattern, or a 3-tuple of arguments suitable for passing to
Django’s redirect shortcut.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-registration 1.0 documentation

Custom signals used by django-registration

Much of django-registration’s customizability comes through the
ability to write and use registration backends
implementing different workflows for user registration. However, there
are many cases where only a small bit of additional logic needs to be
injected into the registration process, and writing a custom backend
to support this represents an unnecessary amount of work. A more
lightweight customization option is provided through two custom
signals which backends are required to send at specific points during
the registration process; functions listening for these signals can
then add whatever logic is needed.

For general documentation on signals and the Django dispatcher,
consult Django’s signals documentation [http://docs.djangoproject.com/en/dev/topics/signals/]. This
documentation assumes that you are familiar with how signals work and
the process of writing and connecting functions which will listen for
signals.

	
registration.signals.user_activated

	Sent when a user account is activated (not applicable to all
backends). Provides the following arguments:

	sender

	The backend class used to activate the user.

	user

	An instance of django.contrib.auth.models.User
representing the activated account.

	request

	The HttpRequest in which the account was activated.

	
registration.signals.user_registered

	Sent when a new user account is registered. Provides the following
arguments:

	sender

	The backend class used to register the account.

	user

	An instance of django.contrib.auth.models.User
representing the new account.

	request

	The HttpRequest in which the new account was registered.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-registration 1.0 documentation

Frequently-asked questions

The following are miscellaneous common questions and answers related
to installing/using django-registration, culled from bug reports,
emails and other sources.

General

	What license is django-registration under?

	django-registration is offered under a three-clause BSD-style
license; this is an OSI-approved open-source license [http://www.opensource.org/licenses/bsd-license.php], and allows
you a large degree of freedom in modifiying and redistributing the
code. For the full terms, see the file LICENSE which came with
your copy of django-registration; if you did not receive a copy of
this file, you can view it online at
<http://bitbucket.org/ubernostrum/django-registration/src/tip/LICENSE>.

	Why are the forms and models for the default backend not in the default backend?

	The model and manager used by the default backend are in registration.models, and the default
form class (and various subclasses) are in registration.forms;
logically, they might be expected to exist in
registration.backends.default, but there are several reasons
why that’s not such a good idea:

	Older versions of django-registration made use of the model and
form classes, and moving them would create an unnecessary
backwards incompatibility: import statements would need to
be changed, and some database updates would be needed to
reflect the new location of the
RegistrationProfile model.

	Due to the design of Django’s ORM, the RegistrationProfile
model would end up with an app_label of default, which
isn’t particularly descriptive and may conflict with other
applications. By keeping it in registration.models, it
retains an app_label of registration, which more
accurately reflects what it does and is less likely to cause
problems.

	Although the RegistrationProfile model and the various
form classes are used by the default backend,
they can and are meant to be reused as needed by other
backends. Any backend which uses an activation step should feel
free to reuse the RegistrationProfile model, for example,
and the registration form classes are in no way tied to a
specific backend (and cover a number of common use cases which
will crop up regardless of the specific backend logic in use).

Installation and setup

	How do I install django-registration?

	Full instructions are available in the quick start guide.

	Do I need to put a copy of django-registration in every project I use it in?

	No; putting applications in your project directory is a very bad
habit, and you should stop doing it. If you followed the
instructions mentioned above, django-registration was installed
into a location that’s on your Python import path, so you’ll only
ever need to add registration to your INSTALLED_APPS
setting (in any project, or in any number of projects), and it
will work.

	Does django-registration come with any sample templates I can use right away?

	No, for two reasons:

	Providing default templates with an application is generally
hard to impossible, because different sites can have such
wildly different design and template structure. Any attempt to
provide templates which would work with all the possibilities
would probably end up working with none of them.

	A number of things in django-registration depend on the
specific registration backend you use,
including the variables which end up in template
contexts. Since django-registration has no way of knowing in
advance what backend you’re going to be using, it also has no
way of knowing what your templates will need to look like.

Fortunately, however, django-registration has good documentation
which explains what context variables will be available to
templates, and so it should be easy for anyone who knows Django’s
template system to create templates which integrate with their own
site.

Configuration

Do I need to rewrite the views to change the way they behave?

Not always. Any behavior controlled by an attribute on a
class-based view can be changed by passing a different value for
that attribute in the URLConf. See Django’s class-based view
documentation [https://docs.djangoproject.com/en/1.5/topics/class-based-views/#simple-usage-in-your-urlconf]
for examples of this.

For more complex or fine-grained control, you will likely want to
subclass RegistrationView or
ActivationView, or both, add your
custom logic to your subclasses, and then create a URLConf which
makes use of your subclasses.

	I don’t want to write my own URLconf because I don’t want to write patterns for all the auth views!

	You’re in luck, then; django-registration provides a URLconf which
only contains the patterns for the auth views, and which you can
include in your own URLconf anywhere you’d like; it lives at
registration.auth_urls.

	I don’t like the names you’ve given to the URL patterns!

	In that case, you should feel free to set up your own URLconf
which uses the names you want.

	I’m using Django 1.5 and a custom user model; how do I make that work?

	Although the two built-in backends supplied with
django-registration both assume Django’s default User model,
the base view classes are deliberately
user-model-agnostic. Simply subclass them, and implement logic for
your custom user model.

Troubleshooting

I’ve got functions listening for the registration/activation signals, but they’re not getting called!

The most common cause of this is placing django-registration in a
sub-directory that’s on your Python import path, rather than
installing it directly onto the import path as normal. Importing
from django-registration in that case can cause various issues,
including incorrectly connecting signal handlers. For example, if
you were to place django-registration inside a directory named
django_apps, and refer to it in that manner, you would end up
with a situation where your code does this:

from django_apps.registration.signals import user_registered

But django-registration will be doing:

from registration.signals import user_registered

From Python’s point of view, these import statements refer to two
different objects in two different modules, and so signal handlers
connected to the signal from the first import will not be called
when the signal is sent using the second import.

To avoid this problem, follow the standard practice of installing
django-registration directly on your import path and always
referring to it by its own module name: registration (and in
general, it is always a good idea to follow normal Python
practices for installing and using Django applications).

Tips and tricks

	How do I log a user in immediately after registration or activation?

	Take a look at the implementation of the simple backend, which logs a user in immediately after
registration.

	How do I re-send an activation email?

	Assuming you’re using the default backend, a custom admin action [http://docs.djangoproject.com/en/dev/ref/contrib/admin/actions/]
is provided for this; in the admin for the
RegistrationProfile model, simply
click the checkbox for the user(s) you’d like to re-send the email
for, then select the “Re-send activation emails” action.

	How do I manually activate a user?

	In the default backend, a custom admin action is provided for
this. In the admin for the RegistrationProfile model, click
the checkbox for the user(s) you’d like to activate, then select
the “Activate users” action.

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-registration 1.0 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 registration	

 	
 	
 registration.backends.default	

 	
 	
 registration.backends.simple	

 	
 	
 registration.forms	

 	
 	
 registration.signals	

 	
 	
 registration.views	

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-registration 1.0 documentation

Index

 A
 | C
 | D
 | F
 | G
 | R
 | S
 | T
 | U

A

 	

 	activate() (registration.views.ActivationView method)

 	activate_user() (registration.models.RegistrationManager method)

 	ACTIVATED (registration.models.RegistrationProfile attribute)

 	

 	activation_key (registration.models.RegistrationProfile attribute)

 	activation_key_expired() (registration.models.RegistrationProfile method)

 	ActivationView (class in registration.views)

C

 	

 	create_inactive_user() (registration.models.RegistrationManager method)

 	

 	create_profile() (registration.models.RegistrationManager method)

D

 	

 	delete_expired_users() (registration.models.RegistrationManager method)

 	

 	disallowed_url (registration.views.RegistrationView attribute)

F

 	

 	form_class (registration.views.RegistrationView attribute)

G

 	

 	get_form_class() (registration.views.RegistrationView method)

 	

 	get_success_url() (registration.views.ActivationView method)

 	

 	(registration.views.RegistrationView method)

R

 	

 	register() (registration.views.RegistrationView method)

 	registration.backends.default (module)

 	registration.backends.simple (module)

 	registration.forms (module)

 	registration.signals (module)

 	registration.views (module)

 	registration_allowed() (registration.views.RegistrationView method)

 	

 	RegistrationForm (class in registration.forms)

 	RegistrationFormNoFreeEmail (class in registration.forms)

 	RegistrationFormTermsOfService (class in registration.forms)

 	RegistrationFormUniqueEmail (class in registration.forms)

 	RegistrationManager (class in registration.models)

 	RegistrationProfile (class in registration.models)

 	RegistrationView (class in registration.views)

S

 	

 	send_activation_email() (registration.models.RegistrationProfile method)

 	

 	success_url (registration.views.RegistrationView attribute)

T

 	

 	template_name (registration.views.ActivationView attribute)

 	

 	(registration.views.RegistrationView attribute)

U

 	

 	user (registration.models.RegistrationProfile attribute)

 	user_activated (in module registration.signals)

 	

 	user_registered (in module registration.signals)

 Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/down.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-registration 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2007-2013, James Bennett.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/plus.png

_static/file.png

