

django-registration 2.4.1

django-registration is an extensible application providing user
registration functionality for Django [https://www.djangoproject.com/]-powered Web sites.

Although nearly all aspects of the registration process are
customizable, out-of-the-box support is provided for two common use
cases:

	Two-phase registration, consisting of initial signup followed by a
confirmation email with instructions for activating the new account.

	One-phase registration, where a user signs up and is immediately
active and logged in.

To get up and running quickly, consult the quick start guide, which describes the steps necessary to configure
django-registration for the built-in workflows. For more detailed
information, including how to customize the registration process (and
support for alternate registration systems), read through the
documentation listed below.

Installation and configuration

	Installation guide

	Quick start guide

Built-in registration workflows

	The HMAC activation workflow

	The one-step workflow

	The model-based activation workflow

For developers

	Base view classes

	Base form classes

	Custom user models

	Validation utilities

	Custom settings

	Signals used by django-registration

	Feature and API deprecation cycle

Other documentation

	Security guide

	Upgrading from previous versions

	Frequently-asked questions

See also

	Django’s authentication documentation [https://docs.djangoproject.com/en/stable/topics/auth/]. Django’s
authentication system is used by django-registration’s default
configuration.

Installation guide

Before installing django-registration, you’ll need to have a copy
of Django [https://www.djangoproject.com] already installed. For
information on obtaining and installing Django, consult the Django
download page [https://www.djangoproject.com/download/], which
offers convenient packaged downloads and installation instructions.

The 2.4.1 release of django-registration supports Django 1.8, 1.9,
1.10 and 1.11, on the following Python versions:

	Django 1.8 supports Python 2.7, 3.3, 3.4 and 3.5.

	Django 1.9 supports Python 2.7, 3.4 and 3.5.

	Django 1.10 supports Python 2.7, 3.4 and 3.5.

	Django 1.11 supports Python 2.7, 3.4, 3.5 and 3.6.

Important

Python 3.2

Although Django 1.8 supported Python 3.2 at the time of its
release, the Python 3.2 series has reached end-of-life, and as a
result support for Python 3.2 has been dropped from
django-registration.

Normal installation

The preferred method of installing django-registration is via
pip, the standard Python package-installation tool. If you don’t
have pip, instructions are available for how to obtain and
install it [https://pip.pypa.io/en/latest/installing.html]. If
you’re using Python 2.7.9 or later (for Python 2) or Python 3.4 or
later (for Python 3), pip came bundled with your installation of
Python.

Once you have pip, type:

pip install django-registration

If you don’t have a copy of a compatible version of Django, this will
also automatically install one for you, and will install a third-party
library required by some of django-registration’s validation code.

Installing from a source checkout

If you want to work on django-registration, you can obtain a source
checkout.

The development repository for django-registration is at
<https://github.com/ubernostrum/django-registration>. If you have git [http://git-scm.com/] installed, you can obtain a copy of the
repository by typing:

git clone https://github.com/ubernostrum/django-registration.git

From there, you can use normal git commands to check out the specific
revision you want, and install it using pip install -e . (the
-e flag specifies an “editable” install, allowing you to change
code as you work on django-registration, and have your changes picked
up automatically).

Next steps

To get up and running quickly, check out the quick start guide. For full documentation, see the documentation
index.

Quick start guide

First you’ll need to have Django and django-registration
installed; for details on that, see the installation guide.

The next steps will depend on which registration workflow you’d like
to use. There are three workflows built in to django-registration;
one is included largely for backwards compatibility with older
releases, while the other two are recommended for new
installations. Those two are:

	The HMAC activation workflow, which
implements a two-step process: a user signs up, then is emailed an
activation link and must click it to activate the account.

	The one-step workflow, in which a user
signs up and their account is immediately active and logged in.

The guide below covers use of these two workflows.

Important

Django’s authentication system must be installed

Before proceeding with either of the recommended built-in
workflows, you’ll need to ensure django.contrib.auth has been
installed (by adding it to INSTALLED_APPS and running
manage.py migrate to install needed database tables). Also, if
you’re making use of a custom user model [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model],
you’ll probably want to pause and read the custom user
compatibility guide before using
django-registration.

Configuring the HMAC activation workflow

The configuration process for using the HMAC activation workflow is
straightforward: you’ll need to specify a couple of settings, connect
some URLs and create a few templates.

Required settings

Begin by adding the following setting to your Django settings file:

	ACCOUNT_ACTIVATION_DAYS

	This is the number of days users will have to activate their
accounts after registering. If a user does not activate within
that period, the account will remain permanently inactive unless a
site administrator manually activates it.

For example, you might have something like the following in your
Django settings:

ACCOUNT_ACTIVATION_DAYS = 7 # One-week activation window; you may, of course, use a different value.

You’ll also need to have django.contrib.auth in your
INSTALLED_APPS setting, since all of the registration workflows in
django-registration make use of it.

Warning

You should not add registration to your
INSTALLED_APPS setting if you’re following this document. This
section is walking you through setup of the the HMAC
activation workflow, and that does not make use of
any custom models or other features which require registration
to be in INSTALLED_APPS. Only add registration to your
INSTALLED_APPS setting if you’re using the model-based
activation workflow, or something derived from
it.

Setting up URLs

Each bundled registration workflow in django-registration includes a
Django URLconf which sets up URL patterns for the views in
django-registration, as well as several useful views in
django.contrib.auth (e.g., login, logout, password
change/reset). The URLconf for the HMAC activation workflow can be
found at registration.backends.hmac.urls, and so can be included
in your project’s root URL configuration. For example, to place the
URLs under the prefix /accounts/, you could add the following to
your project’s root URLconf:

from django.conf.urls import include, url

urlpatterns = [
 # Other URL patterns ...
 url(r'^accounts/', include('registration.backends.hmac.urls')),
 # More URL patterns ...
]

Users would then be able to register by visiting the URL
/accounts/register/, log in (once activated) at
/accounts/login/, etc.

The following URL names are defined by this URLconf:

	registration_register is the account-registrationview..

	registration_complete is the post-registration success message.

	registration_activate is the account-activation view.

	registration_activation_complete is the post-activation success
message.

	registration_disallowed is a message indicating registration is
not currently permitted.

Another URLConf is also provided – at registration.auth_urls
– which just handles the Django auth views, should you want to put
those at a different location.

Required templates

You will also need to create several templates required by
django-registration, and possibly additional templates required by
views in django.contrib.auth. The templates required by
django-registration are as follows; note that, with the exception
of the templates used for account activation emails, all of these are
rendered using a RequestContext and so will also receive any
additional variables provided by context processors [https://docs.djangoproject.com/en/stable/ref/templates/api/#id1].

registration/registration_form.html

Used to show the form users will fill out to register. By default, has
the following context:

	form

	The registration form. This will likely be a subclass of
RegistrationForm; consult Django’s
forms documentation [https://docs.djangoproject.com/en/stable/topics/forms/] for
information on how to display this in a template.

registration/registration_complete.html

Used after successful completion of the registration form. This
template has no context variables of its own, and should inform the
user that an email containing account-activation information has been
sent.

registration/activate.html

Used if account activation fails. With the default setup, has the following context:

	activation_key

	The activation key used during the activation attempt.

registration/activation_complete.html

Used after successful account activation. This template has no context
variables of its own, and should inform the user that their account is
now active.

registration/activation_email_subject.txt

Used to generate the subject line of the activation email. Because the
subject line of an email must be a single line of text, any output
from this template will be forcibly condensed to a single line before
being used. This template has the following context:

	activation_key

	The activation key for the new account.

	expiration_days

	The number of days remaining during which the account may be
activated.

	user

	The user registering for the new account.

	site

	An object representing the site on which the user registered;
depending on whether django.contrib.sites is installed, this
may be an instance of either django.contrib.sites.models.Site
(if the sites application is installed) or
django.contrib.sites.requests.RequestSite (if not). Consult
the documentation for the Django sites framework [https://docs.djangoproject.com/en/stable/ref/contrib/sites/] for
details regarding these objects’ interfaces.

registration/activation_email.txt

Used to generate the body of the activation email. Should display a
link the user can click to activate the account. This template has the
following context:

	activation_key

	The activation key for the new account.

	expiration_days

	The number of days remaining during which the account may be
activated.

	user

	The user registering for the new account.

	site

	An object representing the site on which the user registered;
depending on whether django.contrib.sites is installed, this
may be an instance of either django.contrib.sites.models.Site
(if the sites application is installed) or
django.contrib.sites.requests.RequestSite (if not). Consult
the documentation for the Django sites framework [https://docs.djangoproject.com/en/stable/ref/contrib/sites/] for
details regarding these objects.

scheme

The protocol on which the user had registered, it is http or https

Note that the templates used to generate the account activation email
use the extension .txt, not .html. Due to widespread antipathy
toward and interoperability problems with HTML email,
django-registration defaults to plain-text email, and so these
templates should output plain text rather than HTML.

To make use of the views from django.contrib.auth (which are set
up for you by the default URLconf mentioned above), you will also need
to create the templates required by those views. Consult the
documentation for Django’s authentication system [https://docs.djangoproject.com/en/stable/topics/auth/] for details
regarding these templates.

Configuring the one-step workflow

Also included is a one-step registration workflow, where a user signs up and their account is
immediately active and logged in.

The one-step workflow does not require any models other than those
provided by Django’s own authentication system, so only
django.contrib.auth needs to be in your INSTALLED_APPS
setting.

You will need to configure URLs to use the one-step workflow; the
easiest way is to include() the URLconf
registration.backends.simple.urls in your root URLconf. For
example, to place the URLs under the prefix /accounts/ in your URL
structure:

from django.conf.urls import include, url

urlpatterns = [
 # Other URL patterns ...
 url(r'^accounts/', include('registration.backends.simple.urls')),
 # More URL patterns ...
]

Users could then register accounts by visiting the URL
/accounts/register/.

This URLconf will also configure the appropriate URLs for the rest of
the built-in django.contrib.auth views (log in, log out, password
reset, etc.).

Finally, you will need to create one template:
registration/registration_form.html. See the list of
templates above for details of this template’s
context.

The HMAC activation workflow

The HMAC workflow, found in registration.backends.hmac, implements
a two-step registration process (signup, followed by activation), but
unlike the older model-based activation workflow uses no models and does not store its activation
key; instead, the activation key sent to the user is a timestamped,
HMAC [https://en.wikipedia.org/wiki/Hash-based_message_authentication_code]-verified
value.

Unless you need to maintain compatibility in an existing install of
django-registration which used the model-based workflow, it’s
recommended you use the HMAC activation workflow for two-step signup
processes.

Behavior and configuration

Since this workflow does not make use of any additional models beyond
the user model (either Django’s default
django.contrib.auth.models.User, or a custom user model), do not add registration to your
INSTALLED_APPS setting.

You will need to configure URLs, however. A default URLconf is
provided, which you can include() in your URL configuration; that
URLconf is registration.backends.hmac.urls. For example, to place
user registration under the URL prefix /accounts/, you could place
the following in your root URLconf:

from django.conf.urls import include, url

urlpatterns = [
 # Other URL patterns ...
 url(r'^accounts/', include('registration.backends.hmac.urls')),
 # More URL patterns ...
]

That URLconf also sets up the views from django.contrib.auth
(login, logout, password reset, etc.), though if you want those views
at a different location, you can include() the URLconf
registration.auth_urls to place only the django.contrib.auth
views at a specific location in your URL hierarchy.

Note

URL patterns for activation

Although the actual value used in the activation key is the new
user account’s username, the URL pattern for
ActivationView does not
need to match all possible legal characters in a username. The
activation key that will be sent to the user (and thus matched in
the URL) is produced by django.core.signing.dumps(), which
base64-encodes its output. Thus, the only characters this pattern
needs to match are those from the URL-safe base64 alphabet [http://tools.ietf.org/html/rfc4648#section-5], plus the colon
(“:”) which is used as a separator.

The default URL pattern for the activation view in
registration.backends.hmac.urls handles this for you.

This workflow makes use of up to three settings (click for details on
each):

	ACCOUNT_ACTIVATION_DAYS

	REGISTRATION_OPEN

	REGISTRATION_SALT (see also note
below)

By default, this workflow uses
registration.forms.RegistrationForm as its form class for
user registration; this can be overridden by passing the keyword
argument form_class to the registration view.

Views

Two views are provided to implement the signup/activation
process. These subclass the base views of django-registration, so anything that can be overridden/customized there can
equally be overridden/customized here. There are some additional
customization points specific to the HMAC implementation, which are
listed below.

For an overview of the templates used by these views (other than those
specified below), and their context variables, see the quick
start guide.

	
class registration.backends.hmac.views.RegistrationView

	A subclass of registration.views.RegistrationView
implementing the signup portion of this workflow.

Important customization points unique to this class are:

	
create_inactive_user(form)

	Creates and returns an inactive user account, and calls
send_activation_email() to send the email with the
activation key. The argument form is a valid registration
form instance passed from
register().

	
get_activation_key(user)

	Given an instance of the user model, generates and returns an
activation key (a string) for that user account.

	
get_email_context(activation_key)

	Returns a dictionary of values to be used as template context
when generating the activation email.

	
send_activation_email(user)

	Given an inactive user account, generates and sends the
activation email for that account.

	
email_body_template

	A string specifying the template to use for the body of the
activation email. Default is
"registration/activation_email.txt".

	
email_subject_template

	A string specifying the template to use for the subject of the
activation email. Default is
"registration/activation_email_subject.txt". Note that, to
avoid header-injection vulnerabilities, the result of rendering
this template will be forced into a single line of text,
stripping newline characters.

	
class registration.backends.hmac.views.ActivationView

	A subclass of registration.views.ActivationView
implementing the activation portion of this workflow.

Important customization points unique to this class are:

	
get_user(username)

	Given a username (determined by the activation key), look up and
return the corresponding instance of the user model. Returns
None if no such instance exists. In the base implementation,
will include is_active=False in the query to avoid
re-activation of already-active accounts.

	
validate_key(activation_key)

	Given the activation key, verifies that it carries a valid
signature and a timestamp no older than the number of days
specified in the setting ACCOUNT_ACTIVATION_DAYS, and
returns the username from the activation key. Returns None
if the activation key has an invalid signature or if the
timestamp is too old.

How it works

When a user signs up, the HMAC workflow creates a new User
instance to represent the account, and sets the is_active field to
False. It then sends an email to the address provided during
signup, containing a link to activate the account. When the user
clicks the link, the activation view sets is_active to True,
after which the user can log in.

The activation key is the username of the new account, signed
using Django’s cryptographic signing tools [https://docs.djangoproject.com/en/stable/topics/signing/]
(specifically, signing.dumps() is used, to produce a
guaranteed-URL-safe value). The activation process includes
verification of the signature prior to activation, as well as
verifying that the user is activating within the permitted window (as
specified in the setting ACCOUNT_ACTIVATION_DAYS, mentioned
above), through use of Django’s TimestampSigner.

Comparison to the model-activation workflow

The primary advantage of the HMAC activation workflow is that it
requires no persistent storage of the activation key. However, this
means there is no longer an automated way to differentiate accounts
which have been purposefully deactivated (for example, as a way to ban
a user) from accounts which failed to activate within a specified
window. Additionally, it is possible a user could, if manually
deactivated, re-activate their account if still within the activation
window; for this reason, when using the is_active field to “ban” a
user, it is best to also set the user’s password to an unusable value
(i.e., by calling set_unusable_password() [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User.set_unusable_password]
for that user). Calling set_unusable_password() will also make it
easier to query for manually-deactivated users, as their passwords
will (when using Django’s default User implementation) begin with
the exclamation mark (!) character.

Since the HMAC activation workflow does not use any models, it also
does not make use of the admin interface and thus does not offer a
convenient way to re-send an activation email. Users who have
difficulty receiving the activation email can be manually activated by
a site administrator.

However, the reduced overhead of not needing to store the activation
key makes this generally preferable to the model-based workflow.

Security considerations

The activation key emailed to the user in the HMAC activation workflow
is a value obtained by using Django’s cryptographic signing tools.

In particular, the activation key is of the form:

encoded_username:timestamp:signature

where encoded_username is the username of the new account,
(URL-safe) base64-encoded, timestamp is a base62-encoded timestamp
of the time the user registered, and signature is a (URL-safe)
base64-encoded HMAC of the username and timestamp.

Django’s implementation uses the value of the SECRET_KEY setting
as the key for HMAC; additionally, it permits the specification of a
salt value which can be used to “namespace” different uses of HMAC
across a Django-powered site.

The HMAC activation workflow will use the value (a string) of the
setting REGISTRATION_SALT as the salt,
defaulting to the string "registration" if that setting is not
specified. This value does not need to be kept secret (only
SECRET_KEY does); it serves only to ensure that other parts of a
site which also produce signed values from user input could not be
used as a way to generate activation keys for arbitrary usernames (and
vice-versa).

The one-step workflow

As an alternative to the HMAC and
model-based two-step (registration and
activation) workflows, django-registration bundles a one-step
registration workflow in registration.backends.simple. This
workflow consists of as few steps as possible:

	A user signs up by filling out a registration form.

	The user’s account is created and is active immediately, with no
intermediate confirmation or activation step.

	The new user is logged in immediately.

Configuration

To use this workflow, include the URLconf
registration.backends.simple.urls somewhere in your site’s own URL
configuration. For example:

from django.conf.urls import include, url

urlpatterns = [
 # Other URL patterns ...
 url(r'^accounts/', include('registration.backends.simple.urls')),
 # More URL patterns ...
]

To control whether registration of new accounts is allowed, you can
specify the setting REGISTRATION_OPEN.

Upon successful registration, the user will be redirected to the
site’s home page – the URL /. This can be changed by subclassing
registration.backends.simple.views.RegistrationView and overriding
the method get_success_url().

The default form class used for account registration will be
registration.forms.RegistrationForm, although this can be
overridden by supplying a custom URL pattern for the registration view
and passing the keyword argument form_class, or by subclassing
registration.backends.simple.views.RegistrationView and either
overriding form_class or implementing
get_form_class(), and
specifying the custom subclass in your URL patterns.

Templates

The one-step workflow uses only one custom template:

registration/registration_form.html

Used to show the form users will fill out to register. By default, has
the following context:

	form

	The registration form. This will likely be a subclass of
RegistrationForm; consult Django’s
forms documentation [https://docs.djangoproject.com/en/stable/topics/forms/] for
information on how to display this in a template.

The model-based activation workflow

This workflow implements a two-step – registration, followed by
activation – process for user signup.

Note

Use of the model-based workflow is discouraged

The model-based activation workflow was originally the only
workflow built in to django-registration, and later was the
default one. However, it no longer represents the best practice for
registration with modern versions of Django, and so it continues to
be included only for backwards compatibility with existing
installations of django-registration.

If you’re setting up a new installation and want a two-step process
with activation, it’s recommended you use the HMAC activation
workflow instead.

Also, note that this workflow was previously found in
registration.backends.default, and imports from that location
still function in django-registration 2.4 but now raise
deprecation warnings. The correct location going forward is
registration.backends.model_activation.

Default behavior and configuration

To make use of this workflow, add registration to your
INSTALLED_APPS, run manage.py migrate to install its model,
and include the URLconf
registration.backends.model_activation.urls at whatever location
you choose in your URL hierarchy. For example:

from django.conf.urls import include, url

urlpatterns = [
 # Other URL patterns ...
 url(r'^accounts/', include('registration.backends.model_activation.urls')),
 # More URL patterns ...
]

This workflow makes use of the following settings:

	ACCOUNT_ACTIVATION_DAYS

	REGISTRATION_OPEN

By default, this workflow uses
registration.forms.RegistrationForm as its form class for
user registration; this can be overridden by passing the keyword
argument form_class to the registration view.

Two views are provided:
registration.backends.model_activation.views.RegistrationView and
registration.backends.model_activation.views.ActivationView. These
views subclass django-registration’s base
RegistrationView and
ActivationView, respectively, and
implement the two-step registration/activation process.

Upon successful registration – not activation – the user will be
redirected to the URL pattern named registration_complete.

Upon successful activation, the user will be redirected to the URL
pattern named registration_activation_complete.

This workflow uses the same templates and contexts as the HMAC
activation workflow, which is covered in the
quick-start guide. Refer to the quick-start guide
for documentation on those templates and their contexts.

How account data is stored for activation

During registration, a new instance of the user model (by default,
Django’s django.contrib.auth.models.User – see the custom
user documentation for notes on using a different
model) is created to represent the new account, with the is_active
field set to False. An email is then sent to the email address of
the account, containing a link the user must click to activate the
account; at that point the is_active field is set to True, and
the user may log in normally.

Activation is handled by generating and storing an activation key in
the database, using the following model:

	
class registration.models.RegistrationProfile

	A representation of the information needed to activate a new user
account. This is not a user profile; it just provides a place
to temporarily store the activation key and determine whether a
given account has been activated.

Has the following fields:

	
user

	A OneToOneField to the user model, representing the user
account for which activation information is being stored.

	
activation_key

	A 40-character CharField, storing the activation key for the
account. Initially, the activation key is the hex digest of a
SHA1 hash; after activation, this is reset to ACTIVATED.

Additionally, one class attribute exists:

	
ACTIVATED

	A constant string used as the value of activation_key
for accounts which have been activated.

And the following methods:

	
activation_key_expired()

	Determines whether this account’s activation key has expired,
and returns a boolean (True if expired, False
otherwise). Uses the following algorithm:

	If activation_key is ACTIVATED, the account
has already been activated and so the key is considered to
have expired.

	Otherwise, the date of registration (obtained from the
date_joined field of user) is compared to the
current date; if the span between them is greater than the
value of the setting ACCOUNT_ACTIVATION_DAYS, the key is
considered to have expired.

	Return type

	bool

	
send_activation_email(site)

	Sends an activation email to the address of the account.

The activation email will make use of two templates:
registration/activation_email_subject.txt and
registration/activation_email.txt, which are used for the
subject of the email and the body of the email,
respectively. Each will receive the following context:

	activation_key

	The value of activation_key.

	expiration_days

	The number of days the user has to activate, taken from the
setting ACCOUNT_ACTIVATION_DAYS.

	user

	The user registering for the new account.

	site

	An object representing the site on which the account was
registered; depending on whether django.contrib.sites is
installed, this may be an instance of either
django.contrib.sites.models.Site (if the sites
application is installed) or
django.contrib.sites.models.RequestSite (if
not). Consult the documentation for the Django sites
framework [http://docs.djangoproject.com/en/dev/ref/contrib/sites/]
for details regarding these objects’ interfaces.

Note that, to avoid header-injection vulnerabilities, the
rendered output of registration/activation_email_subject.txt
will be forcibly condensed to a single line.

	Parameters

	site (django.contrib.sites.models.Site or
django.contrib.sites.models.RequestSite) – An object representing the site on which account
was registered.

	Return type

	None

Additionally, RegistrationProfile has a custom manager
(accessed as RegistrationProfile.objects):

	
class registration.models.RegistrationManager

	This manager provides several convenience methods for creating and
working with instances of RegistrationProfile:

	
activate_user(activation_key)

	Validates activation_key and, if valid, activates the
associated account by setting its is_active field to
True. To prevent re-activation of accounts, the
activation_key of the
RegistrationProfile for the account will be set to
RegistrationProfile.ACTIVATED after successful
activation.

Returns the user instance representing the account if
activation is successful, False otherwise.

	Parameters

	activation_key (string, a 40-character SHA1 hexdigest) – The activation key to use for the
activation.

	Return type

	user or bool

	
expired()

	
Deprecated since version 2.3: This method is deprecated and scheduled
to be removed in django-registration 3.0.

Return instances of RegistrationProfile corresponding
to expired users. A user is considered to be “expired” if:

	The activation key of the user’s RegistrationProfile
is not set to RegistrationProfile.ACTIVATED, and

	The user’s is_active field of is False, and

	The user’s date_joined field is more than
ACCOUNT_ACTIVATION_DAYS in the
past.

	Return type

	QuerySet of RegistrationProfile

	
delete_expired_users()

	
Deprecated since version 2.3: This method is deprecated and scheduled
to be removed in django-registration 3.0, as is the
referenced cleanupregistration management command.

Removes expired instances of RegistrationProfile, and
their associated user accounts, from the database. This is
useful as a periodic maintenance task to clean out accounts
which registered but never activated.

A custom management command is provided which will execute this
method, suitable for use in cron jobs or other scheduled
maintenance tasks: manage.py cleanupregistration.

	Return type

	None

	
create_inactive_user(form, site, send_email=True)

	Creates a new, inactive user account and an associated instance
of RegistrationProfile, sends the activation email and
returns the new User object representing the account.

	Parameters

	
	form – A bound instance of a subclass of
RegistrationForm representing
the (already-validated) data the user is trying to register
with.

	site – An object representing the site on which the
account is being registered. :type site:
django.contrib.sites.models.Site or
django.contrib.sites.models.RequestSite :param
send_email: If True, the activation email will be sent to
the account (by calling
RegistrationProfile.send_activation_email()). If
False, no email will be sent (but the account will still
be inactive). :type send_email: bool :rtype: user

	
create_profile(user)

	Creates and returns a RegistrationProfile instance for
the account represented by user.

The RegistrationProfile created by this method will have its
activation_key set to a SHA1 hash
generated from a combination of the account’s username and a
random salt.

	Parameters

	user (User) – The user account; an instance of
django.contrib.auth.models.User.

	Return type

	RegistrationProfile

Base view classes

In order to allow the utmost flexibility in customizing and supporting
different workflows, django-registration makes use of Django’s
support for class-based views [https://docs.djangoproject.com/en/stable/topics/class-based-views/]. Included
in django-registration are two base classes which can be
subclassed to implement whatever workflow is required.

The built-in workflows in django-registration provide their own
subclasses of these views, and the documentation for those workflows
will indicate customization points specific to those subclasses. The
following reference covers useful attributes and methods of the base
classes, for use in writing your own custom subclasses.

	
class registration.views.RegistrationView

	A subclass of Django’s FormView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-editing/#formview],
which provides the infrastructure for supporting user registration.

Since it’s a subclass of FormView, RegistrationView has all
the usual attributes and methods you can override.

When writing your own subclass, one method is required:

	
register(form)

	Implement your registration logic here. form will be the
(already-validated) form filled out by the user during the
registration process (i.e., a valid instance of
registration.forms.RegistrationForm or a subclass of
it).

This method should return the newly-registered user instance,
and should send the signal
registration.signals.user_registered. Note that this is
not automatically done for you when writing your own custom
subclass, so you must send this signal manually.

Useful optional places to override or customize on a
RegistrationView subclass are:

	
disallowed_url

	The URL to redirect to when registration is disallowed. Should
be a string name of a URL pattern [https://docs.djangoproject.com/en/stable/topics/http/urls/#naming-url-patterns].
Default value is "registration_disallowed".

	
form_class

	The form class to use for user registration. Can be overridden
on a per-request basis (see below). Should be the actual class
object; by default, this class is
registration.forms.RegistrationForm.

	
success_url

	The URL to redirect to after successful registration. A string
containing a (relative) URL, or a string name of a URL pattern,
or a 3-tuple of arguments suitable for passing to Django’s
redirect shortcut [https://docs.djangoproject.com/en/stable/topics/http/shortcuts/#redirect]. Can
be overridden on a per-request basis (see below). Default value
is None, so that per-request customization is used instead.

	
template_name

	The template to use for user registration. Should be a
string. Default value is
registration/registration_form.html.

	
get_form_class()

	Select a form class to use on a per-request basis. If not
overridden, will use form_class. Should be the actual
class object.

	
get_success_url(user)

	Return a URL to redirect to after successful registration, on a
per-request or per-user basis. If not overridden, will use
success_url. Should return a string containing a
(relative) URL, or a string name of a URL pattern, or a 3-tuple
of arguments suitable for passing to Django’s redirect
shortcut.

	
registration_allowed()

	Should return a boolean indicating whether user registration is
allowed, either in general or for this specific request. Default
value is the value of the setting
REGISTRATION_OPEN.

	
class registration.views.ActivationView

	A subclass of Django’s TemplateView [https://docs.djangoproject.com/en/stable/ref/class-based-views/base/#templateview]
which provides support for a separate account-activation step, in
workflows which require that.

One method is required:

	
activate(*args, **kwargs)

	Implement your activation logic here. You are free to configure
your URL patterns to pass any set of positional or keyword
arguments to ActivationView, and they will in turn be passed
to this method.

This method should return the newly-activated user instance (if
activation was successful), or boolean False if activation
was not successful.

Useful places to override or customize on an ActivationView
subclass are:

	
success_url

	The URL to redirect to after successful activation. A string
containing a (relative) URL, or a string name of a URL pattern,
or a 3-tuple of arguments suitable for passing to Django’s
redirect shortcut [https://docs.djangoproject.com/en/stable/topics/http/shortcuts/#redirect]. Can
be overridden on a per-request basis (see below). Default value
is None, so that per-request customization is used instead.

	
template_name

	The template to use for user activation. Should be a
string. Default value is registration/activate.html.

	
get_success_url(user)

	Return a URL to redirect to after successful registration, on a
per-request or per-user basis. If not overridden, will use
success_url. Should return a string containing a
(relative) URL, or a string name of a URL pattern, or a 3-tuple
of arguments suitable for passing to Django’s redirect
shortcut.

Base form classes

Several form classes are provided with django-registration,
covering common cases for gathering account information and
implementing common constraints for user registration. These forms
were designed with django-registration’s built-in registration
workflows in mind, but may also be useful in other situations.

	
class registration.forms.RegistrationForm

	A form for registering an account. This is a subclass of
Django’s built-in UserCreationForm, and has the following
fields, all of which are required:

	username

	The username to use for the new account. This is represented as
a text input which validates that the username is unique,
consists entirely of alphanumeric characters and underscores
and is at most 30 characters in length.

	email

	The email address to use for the new account. This is
represented as a text input which accepts email addresses up to
75 characters in length.

	password1

	The password to use for the new account. This is represented as
a password input (input type="password" in the rendered
HTML).

	password2

	The password to use for the new account. This is represented as
a password input (input type="password" in the rendered
HTML).

Because this is a subclass of Django’s own UserCreationForm,
the constraints on usernames and email addresses match those
enforced by Django’s default authentication backend for instances
of django.contrib.auth.models.User. The repeated entry of the
password serves to catch typos.

Note

Unicode usernames

There is one important difference in form behavior depending on
the version of Python you’re using. Django’s username validation
regex allows a username to contain any word character along with
the following set of additional characters: .@+-. However,
on Python 2 this regex uses the ASCII flag (since Python 2’s
string type is ASCII by default), while on Python 3 it uses the
UNICODE flag (since Python 3’s string type is Unicode). This
means that usernames containing non-ASCII word characters are
only permitted when using Python 3.

The validation error for mismatched passwords is attached to the
password2 field. This is a backwards-incompatible change from
django-registration 1.0.

Note

Validation of usernames

Because it’s a subclass of Django’s UserCreationForm,
RegistrationForm will inherit the base validation defined by
Django. It also adds a custom clean() method which applies
one custom validator:
ReservedNameValidator. See the
documentation for ReservedNameValidator for notes on why it
exists and how to customize its behavior.

	
class registration.forms.RegistrationFormTermsOfService

	A subclass of RegistrationForm which adds one additional,
required field:

	tos

	A checkbox indicating agreement to the site’s terms of
service/user agreement.

	
class registration.forms.RegistrationFormUniqueEmail

	A subclass of RegistrationForm which enforces uniqueness
of email addresses in addition to uniqueness of usernames.

	
class registration.forms.RegistrationFormNoFreeEmail

	A subclass of RegistrationForm which disallows
registration using addresses from some common free email
providers. This can, in some cases, cut down on automated
registration by spambots.

By default, the following domains are disallowed for email
addresses:

	aim.com

	aol.com

	email.com

	gmail.com

	googlemail.com

	hotmail.com

	hushmail.com

	msn.com

	mail.ru

	mailinator.com

	live.com

	yahoo.com

To change this, subclass this form and set the class attribute
bad_domains to a list of domains you wish to disallow.

Custom user models

When django-registration was first developed, Django’s
authentication system supported only its own built-in user model,
django.contrib.auth.models.User. More recent versions of Django
have introduced support for custom user models [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model].

Older versions of django-registration did not generally support custom
user models due to the additional complexity required. However,
django-registration now can support custom user models. Depending on
how significantly your custom user model differs from Django’s
default, you may need to change only a few lines of code; custom user
models significantly different from the default model may require more
work to support.

Overview

The primary issue when using django-registration with a custom
user model will be
RegistrationForm. RegistrationForm is
a subclass of Django’s built-in UserCreationForm, which in turn is
a ModelForm with its model set to
django.contrib.auth.models.User. The only changes made by
django-registration are to apply the reserved name validator
(registration.validators.ReservedNameValidator) and make the
email field required (by default, Django’s user model makes this
field optional; it is required in RegistrationForm because two of
the three built-in workflows of django-registration require an
email address in order to send account-activation instructions to the
user). As a result, you will always be required to supply a custom
form class when using django-registration with a custom user
model.

In the case where your user model is compatible with the default
behavior of django-registration, (see below) you will be able to
subclass RegistrationForm, set it to use your custom user model as
the model, and then configure the views in django-registration to use
your form subclass. For example, you might do the following (in a
forms.py module somewhere in your codebase – do not directly
edit django-registration’s code):

from registration.forms import RegistrationForm

from mycustomuserapp.models import MyCustomUser

class MyCustomUserForm(RegistrationForm):
 class Meta:
 model = MyCustomUser

You will also need to specify the fields to include in the form, via
the fields declaration.

And then in your URL configuration (example here uses the HMAC
activation workflow):

from django.conf.urls import include, url

from registration.backends.hmac.views import RegistrationView

from mycustomuserapp.forms import MyCustomUserForm

urlpatterns = [
 # ... other URL patterns here
 url(r'^accounts/register/$',
 RegistrationView.as_view(
 form_class=MyCustomUserForm
),
 name='registration_register',
),
 url(r'^accounts/', include('registration.backends.hmac.urls')),
]

If your custom user model is not compatible with the built-in
workflows of django-registration (see next section), you will
probably need to subclass the provided views (either the base
registration views, or the views of the workflow you want to use) and
make the appropriate changes for your user model.

Determining compatibility of a custom user model

The built-in workflows and other code of django-registration do as
much as is possible to ensure compatibility with custom user models;
django.contrib.auth.models.User is never directly imported or
referred to, and all code in django-registration instead uses
settings.AUTH_USER_MODEL or
django.contrib.auth.get_user_model() to refer to the user model,
and USERNAME_FIELD when access to the username is required.

However, there are still some specific requirements you’ll want to be
aware of.

The two-step activation workflows – both HMAC-
and model-based – require that your user
model have the following fields:

	email – a textual field (EmailField, CharField or
TextField) holding the user’s email address. Note that this
field is required by RegistrationForm, which is a difference
from Django’s default UserCreationForm.

	is_active – a BooleanField indicating whether the user’s
account is active.

You also must specify the attribute USERNAME_FIELD on your user
model to denote the field used as the username. Additionally, your
user model must implement the email_user method for sending email
to the user.

The model-based activation workflow requires one additional field:

	date_joined – a DateField or DateTimeField indicating
when the user’s account was registered.

The one-step workflow requires that your
user model set USERNAME_FIELD, and requires that it define a field
named password for storing the user’s password (it will expect to
find this value in the password1 field of the registration form);
the combination of USERNAME_FIELD and password must be
sufficient to log a user in. Also note that RegistrationForm
requires the email field, so either provide that field on your
model or subclass RegistrationForm.

If your custom user model defines additional fields beyond the minimum
requirements, you’ll either need to ensure that all of those fields
are optional (i.e., can be NULL in your database, or provide a
suitable default value defined in the model), or you’ll need to
specify the full list of fields to display in the fields option of
your RegistrationForm subclass.

Validation utilities

To ease the process of validating user registration data,
django-registration includes some validation-related data and
utilities in registration.validators.

The available error messages are:

	
registration.validators.DUPLICATE_EMAIL

	Error message raised by
RegistrationFormUniqueEmail when the
supplied email address is not unique.

	
registration.validators.FREE_EMAIL

	Error message raised by
RegistrationFormNoFreeEmail when the
supplied email address is rejected by its list of free-email
domains.

	
registration.validators.RESERVED_NAME

	Error message raised by
ReservedNameValidator when it is
given a value that is a reserved name.

	
registration.validators.TOS_REQUIRED

	Error message raised by
RegistrationFormTermsOfService when
the terms-of-service field is not checked.

All of these error messages are marked for translation; most have
translations into multiple languages already in
django-registration.

Additionally, two custom validators are provided:

	
class registration.validators.ReservedNameValidator

	A custom validator (see Django’s validators documentation [https://docs.djangoproject.com/en/stable/ref/forms/validation/#using-validators])
which prohibits the use of a reserved name as the value.

By default, this validator is applied to the username field of
registration.forms.RegistrationForm and all of its
subclasses. The validator is applied in a form-level clean()
method on RegistrationForm, so to remove it (not recommended),
subclass RegistrationForm and override clean(). For no
custom form-level validation, you could implement it as:

def clean(self):
 pass

If you want to supply your own custom list of reserved names, you
can subclass RegistrationForm and set the attribute
reserved_names to the list of values you want to disallow.

Note

Why reserved names are reserved

Many Web applications enable per-user URLs (to display account
information), and some may also create email addresses or even
subdomains, based on a user’s username. While this is often
useful, it also represents a risk: a user might register a name
which conflicts with an important URL, email address or
subdomain, and this might give that user control over it.

django-registration includes a list of reserved names, and
rejects them as usernames by default, in order to avoid this
issue.

The default list of reserved names, if you don’t specify one, is
DEFAULT_RESERVED_NAMES. The
validator will also reject any value beginning with the string
".well-known" (see RFC 5785 [https://www.ietf.org/rfc/rfc5785.txt]).

Several constants are provided which are used by this validator:

	
registration.validators.SPECIAL_HOSTNAMES

	A list of hostnames with reserved or special meaning (such as
“autoconfig”, used by some email clients to automatically discover
configuration data for a domain).

	
registration.validators.PROTOCOL_HOSTNAMES

	A list of protocol-specific hostnames sites commonly want to
reserve, such as “www” and “mail”.

	
registration.validators.CA_ADDRESSES

	A list of email usernames commonly used by certificate authorities
when verifying identity.

	
registration.validators.RFC_2142

	A list of common email usernames specified by RFC 2142 [https://www.ietf.org/rfc/rfc2142.txt].

	
registration.validators.NOREPLY_ADDRESSES

	A list of common email usernames used for automated messages from a
Web site (such as “noreply” and “mailer-daemon”).

	
registration.validators.SENSITIVE_FILENAMES

	A list of common filenames with important meanings, such that
usernames should not be allowed to conflict with them (such as
“favicon.ico” and “robots.txt”).

	
registration.validators.OTHER_SENSITIVE_NAMES

	Other names, not covered by the above lists, which have the
potential to conflict with common URLs or subdomains, such as
“blog” and “docs”.

	
registration.validators.DEFAULT_RESERVED_NAMES

	A list made of the concatentation of all of the above lists, used
as the default set of reserved names for
ReservedNameValidator.

	
registration.validators.validate_confusables(value)

	A custom validator which prohibits the use of
dangerously-confusable usernames.

Django permits broad swaths of Unicode to be used in usernames;
while this is useful for serving a worldwide audience, it also
creates the possibility of homograph attacks [https://en.wikipedia.org/wiki/IDN_homograph_attack] through the
use of characters which are easily visually confused for each other
(for example, “pаypаl” contains a Cyrillic “а”, visually
indistinguishable in many fonts from a Latin “а”).

This validator will reject any mixed-script value (as defined by
Unicode ‘Script’ property) which also contains one or more
characters that appear in the Unicode Visually Confusable
Characters file.

This validator is enabled by default on the username field of
registration forms.

	Parameters

	value (str (non-string usernames will not be checked)) – The username value to validate

	
registration.validators.validate_confusables_email(value)

	A custom validator which prohibits the use of
dangerously-confusable email address.

Django permits broad swaths of Unicode to be used in email
addresses; while this is useful for serving a worldwide audience,
it also creates the possibility of homograph attacks [https://en.wikipedia.org/wiki/IDN_homograph_attack] through the
use of characters which are easily visually confused for each other
(for example, “pаypаl” contains a Cyrillic “а”, visually
indistinguishable in many fonts from a Latin “а”).

This validator will reject any email address where either the
local-part of the domain is – when considered in isolation –
dangerously confusable. A string is dangerously confusable if it is
a mixed-script value (as defined by Unicode ‘Script’ property)
which also contains one or more characters that appear in the
Unicode Visually Confusable Characters file.

This validator is enabled by default on the email field of
registration forms.

	Parameters

	value (str) – The email address to validate

Custom settings

Although the choice of registration workflow does not necessarily
require changes to your Django settings (as registration workflows are
selected by including the appropriate URL patterns in your root
URLconf), the built-in workflows of django-registration make use
of several custom settings.

	
django.conf.settings.ACCOUNT_ACTIVATION_DAYS

	An int indicating how long (in days) after signup an account
has in which to activate.

This setting is required if using one of the built-in two-step
workflows:

	The two-step HMAC activation workflow

	The model-based activation workflow

	
django.conf.settings.REGISTRATION_OPEN

	A bool indicating whether registration of new accounts is
currently permitted.

A default of True is assumed when this setting is not supplied,
so specifying it is optional unless you want to temporarily close
registration (in which case, set it to False).

Used by:

	The two-step HMAC activation workflow

	The one-step workflow

	The model-based activation workflow

Third-party workflows wishing to use an alternate method of
determining whether registration is allowed should subclass
registration.views.RegistrationView (or a subclass of it
from an existing workflow) and override
registration_allowed().

	
django.conf.settings.REGISTRATION_SALT

	A str used as an additional “salt” in the process of generating
HMAC-signed activation keys.

This setting is optional, and a default of "registration" will
be used if not specified. The value of this setting does not need
to be kept secret; see the note about this salt value and
security for details.

Used by:

	The two-step HMAC activation workflow

Signals used by django-registration

Much of django-registration’s customizability comes through the
ability to write and use different workflows for user
registration. However, there are many cases where only a small bit of
additional logic needs to be injected into the registration process,
and writing a custom workflow to support this represents an
unnecessary amount of work. A more lightweight customization option is
provided through two custom signals which the built-in registration
workflows send, and custom workflows are encouraged to send, at
specific points during the registration process; functions listening
for these signals can then add whatever logic is needed.

For general documentation on signals and the Django dispatcher,
consult Django’s signals documentation [http://docs.djangoproject.com/en/stable/topics/signals/]. This
documentation assumes that you are familiar with how signals work and
the process of writing and connecting functions which will listen for
signals.

	
registration.signals.user_activated

	Sent when a user account is activated (not applicable to all
workflows). Provides the following arguments:

	sender

	The ActivationView subclass used
to activate the user.

	user

	A user-model instance representing the activated account.

	request

	The HttpRequest in which the account was activated.

This signal is automatically sent for you by the base
ActivationView, so unless you’ve
overridden its get() method in a subclass you should not need
to explicitly send it.

	
registration.signals.user_registered

	Sent when a new user account is registered. Provides the following
arguments:

	sender

	The RegistrationView subclass used
to register the account.

	user

	A user-model instance representing the new account.

	request

	The HttpRequest in which the new account was registered.

This signal is not automatically sent for you by the base
RegistrationView. It is sent by the
subclasses implemented for the three included registration
workflows, but if you write your own subclass of
RegistrationView, you’ll need to send this signal as part of
the implementation of the
register() method.

Feature and API deprecation cycle

The following features or APIs of django-registration are deprecated
and scheduled to be removed in future releases. Please make a note of
this and update your use of django-registration accordingly. When
possible, deprecated features will emit a DeprecationWarning as an
additional warning of pending removal.

registration.urls

Will be removed in: django-registration 3.0

This URLconf was provided in the earliest days of django-registration,
when the model-based workflow was the only one
provided. Sites using the model-based workflow should instead
include() the URLconf
registration.backends.model_activation.urls.

registration.backends.default

Will be removed in: django-registration 3.0

Once django-registration began supporting multiple workflows, the
model-based workflow was moved to
registration.backends.default. Later, it was renamed to
registration.backends.model_activation, but a module was left in
place at registration.backends.default for compatibility.

Sites using the model-based workflow should ensure all imports are
from registration.backends.model_activation.

registration.auth_urls

Will be removed in: django-registration 3.0

For convenience, each URLconf provided in django-registration also
sets up URLs for the views in django.contrib.auth (login, logout,
password change, and password reset). These URLs are identical –
except for the names assigned to them – to those defined in
django.contrib.auth.urls.

As of 3.0, registration.auth_urls will be removed, and
django-registration will encourage users to instead include() the
URLconf django.contrib.auth.urls at an appropriate location in
their root URLconf.

Expired-account cleanup

Will be removed in: django-registration 3.0

The model-based workflow includes several pieces of code for deleting
“expired” – registered but never activated – accounts. This was
originally intended as a convenience, but several contentious bug
reports have shown that it is less convenient and more prone to
ambiguity than desired. As a result, this code will be removed in
3.0. This entails removing the following:

	The expired() method

	The delete_expired_users()
method

	The cleanupregistration management command, which invokes the
delete_expired_users method.

Sites wishing to clean up expired accounts will need to implement a
method for doing this which conforms to their needs and their
interpretation of “expired”.

Security guide

Anything related to users or user accounts has security implications
and represents a large source of potential security issues. This
document is not an exhaustive guide to those implications and issues,
and makes no guarantees that your particular use of Django or
django-registration will be safe; instead, it provides a set of
recommendations, and explanations for why django-registration does
certain things or recommends particular approaches. Using this
software responsibly is, ultimately, up to you.

Before continuing with this document, you should ensure that you’ve
read and understood Django’s security documentation [https://docs.djangoproject.com/en/stable/#security]. Django
provides a good overview of common security issues in the general
field of web development, and an explanation of how it helps to
protect against them or provides tools to help you do so.

You should also ensure you’re following Django’s security
recommendations. You can check for many common issues by running:

python manage.py check --tag security

on your codebase.

Recommendation: use the HMAC workflow

Three user-signup workflows are included in django-registration, along
with support for writing your own. If you choose to use one of the
included workflows, the HMAC workflow is the
recommended default.

The HMAC workflow provides a verification step – the user must click
a link sent to the email address they used to register – which can
serve as an impediment to automated account creation for malicious
purposes. And unlike the model-based workflow,
the HMAC workflow does not need to store any additional server-side
data (other than the user account itself – the model workflow uses an
additional model to store the activation key).

The HMAC workflow generates an activation key which consists of the
new account’s username and the timestamp of the signup, verified using
Django’s cryptographic signing tools [https://docs.djangoproject.com/en/1.11/topics/signing/] which in
turn use the HMAC implementation from the Python standard library [https://docs.python.org/3/library/hmac.html]. Thus,
django-registration is not inventing or buliding any new cryptography,
but only using existing/vetted implementations in an approved and
standard manner.

Additionally, the HMAC workflow takes steps to ensure that its use of
HMAC does not act as an oracle – several parts of Django use the
signing tools, and third-party applications are free to use them as
well, so django-registration makes use of the ability to supply a salt
value for the purpose of “namespacing” HMAC usage. Thus an activation
token generated by django-registration’s HMAC workflow should not be
usable for attacks against other HMAC-carrying values generated by the
same installation of Django.

Restrictions on user names: reserved names

By default, django-registration applies a list of reserved names, and
does not permit users to create accounts using those names (see
ReservedNameValidator). The default
list of reserved names includes many names that could cause confusion
or even inappropriate access. These reserved names fall into several
categories:

	Usernames which could allow a user to impersonate or be seen as a
site administrator. For example, ‘admin’ or ‘administrator’.

	Usernames corresponding to standard/protocol-specific email
addresses (relevant for sites where creating an account also creates
an email address with that username). For example, ‘webmaster’.

	Usernames corresponding to standard/sensitive subdomain names
(relevant for sites where creating an account also creates a
subdomain corresponding to the username). For example, ‘ftp’ or
‘autodiscover’.

	Usernames which correspond to sensitive URLs (relevant for sites
where user profiles appear at a URL containing the username). For
example, ‘contact’ or ‘buy’.

It is strongly recommended that you leave the reserved-name validation
enabled.

Restrictions on user names and email addresses: Unicode

By default, django-registration permits the use of Unicode in
usernames and email addresses. However, to prevent some types of
Unicode-related attacks, django-registration will not permit certain
specific uses of Unicode characters.

For example, while the username ‘admin’ cannot normally be
registered (see above), a user might still attempt to register a name
that appears visually identical, by substituting a Cyrillic ‘a’ or
other similar-appearing character for the first character.

To prevent this, django-registration applies the following rule to
usernames, and to the local-part and the domain of email addresses:

	If the submitted value is mixed-script (contains characters from
multiple different scripts, as in the above example which would mix
Cyrillic and Latin characters), and

	If the submitted value contains characters appearing in the Unicode
Visually Confusable Characters file,

	Then the value will be rejected.

This should not interfere with legitimate use of Unicode, or of
non-English/non-Latin characters in usernames and email addresses. To
avoid a common false-positive situation, the local-part and domain of
an email address are checked independently of each other.

It is strongly recommended that you leave this validation enabled.

Upgrading from previous versions

Prior to 2.0, the last widely-deployed release of
django-registration was 0.8; a 1.0 release was published, and
2.4 is mostly backwards-compatible with it, but 1.0 appears not
to have seen wide adoption. As such, this guide covers the process of
upgrading from django-registration 0.8, as well as from 1.0.

Backends are now class-based views

In django-registration 0.8, a registration workflow was
implemented as a class with specific methods for the various steps of
the registration process. In django-registration 2.0 and later, a
registration workflow is implemented as one or more class-based views.

In general, the required changes to implement a 0.8 registration
workflow in django-registration 2.4 is:

	0.8 backend class implementation

	2.0+ view subclass implementation

	Backend class implementing register()

	registration.views.RegistrationView.register()

	Backend class implementing activate()

	registration.views.ActivationView.activate()

	Backend class implementing registration_allowed()

	registration.views.RegistrationView.registration_allowed()

	Backend class implementing get_form_class()

	registration.views.RegistrationView.get_form_class()

	Backend class implementing post_registration_redirect()

	registration.views.RegistrationView.get_success_url()

	Backend class implementing post_activation_redirect()

	registration.views.ActivationView.get_success_url()

URLconf changes

If you were using one of the provided workflows in
django-registration 0.8 without modification, you will not need to
make any changes; both registration.backends.default.urls and
registration.backends.simple.urls have been updated in
django-registration 2.0+ to correctly point to the new
class-based views:

	0.8 URLconf view reference

	2.4 URLconf view reference

	registration.views.register

	registration.views.RegistrationView.as_view()

	registration.views.activate

	registration.views.ActivationView.as_view()

However, if you were using the two-step model-activation workflow, you
should begin referring to
registration.backends.model_activation.urls instead of
registration.backends.default.urls or registration.urls, as
the latter two are deprecated and support for them will be removed in
a future release.

If you were passing custom arguments to the built-in registration
views, those arguments should continue to work, so long as your
URLconf is updated to refer to the new class-based views. For details
of how to pass custom arguments to class-based views, see the Django
class-based view documentation [https://docs.djangoproject.com/en/stable/topics/class-based-views/#simple-usage-in-your-urlconf].

Template changes

When using RegistrationForm, the error
from mismatched passwords now is attached to the password2 field
rather than being a form-level error. To check for and display this
error, you will need to change to accessing it via the password2
field rather than via non_field_errors() or the __all__ key in
the errors dictionary.

Changes since 1.0

If you used django-registration 1.0, or a pre-2.0 checkout of the
code, you will need to make some minor adjustments.

If you previously used registration.backends.default, you will now
see deprecation warnings, as the former “default” workflow is now
found in registration.backends.model_activation. Use of
registration.backends.default continues to work in
django-registration 2.4, but will be removed in the future.

Similarly, references to registration.urls should become
references to registration.backends.model_activation.urls, and
registration.urls is deprecated and will be removed in a future
release.

If you had written custom subclasses of
RegistrationView or of
RegistrationView subclasses in the built-in workflows, the
following changes need to be noted:

	The register method now receives the
RegistrationForm instance used during
signup, rather than keyword arguments corresponding to the form’s
cleaned_data.

	RegistrationForm itself is now a subclass of Django’s built-in
UserCreationForm, and as such is now a ModelForm
subclass. This can cause metaclass conflict errors if you write a
class which is a subclass of both RegistrationForm and a
non-ModelForm form class; to avoid this, ensure that subclasses
of RegistrationForm and/or ModelForm come first in your
subclass’ method resolution order.

	As noted above, the password-mismatch error message is now attached
to the password2 field rather than being a form-level error.

Changes since 2.0

One major change occurred between django-registration 2.0 and 2.1: the
addition in version 2.1 of the
ReservedNameValidator, which is now
used by default on RegistrationForm and
its subclasses.

This is technically backwards-incompatible, since a set of usernames
which previously could be registered now cannot be registered, but was
included because the security benefits outweigh the edge cases of the
now-disallowed usernames. If you need to allow users to register with
usernames forbidden by this validator, see its documentation for notes
on how to customize or disable it.

In 2.2, the behavior of the
expired() method was
clarified to accommodate user expectations; it does not return (and
thus,
delete_expired_users()
does not delete) profiles of users who had successfully activated.

In django-registration 2.3, the new validators
validate_confusables() and
validate_confusables_email() were
added, and are applied by default to the username field and email
field, respectively, of registration forms. This may cause some
usernames which previously were accepted to no longer be accepted, but
like the reserved-name validator this change was made because its
security benefits significantly outweigh the edge cases in which it
might disallow an otherwise-acceptable username or email address. If
for some reason you need to allow registration with usernames or email
addresses containing potentially dangerous use of Unicode, you can
subclass the registration form and remove these validators, though
doing so is not recommended.

Frequently-asked questions

The following are miscellaneous common questions and answers related
to installing/using django-registration, culled from bug reports,
emails and other sources.

General

How can I support social-media and other auth schemes, like Facebook or GitHub?

By using django-allauth [https://pypi.python.org/pypi/django-allauth]. No single
application can or should provide a universal API for every
authentication system ever developed; django-registration
sticks to making it easy to implement typical signup workflows
using Django’s own user model and auth system (with some ability
to use custom user models), while apps like django-allauth
handle integration with third-party authentication services far
more effectively.

What license is django-registration under?

django-registration is offered under a three-clause BSD-style
license; this is an OSI-approved open-source license [http://www.opensource.org/licenses/bsd-license.php], and allows
you a large degree of freedom in modifiying and redistributing the
code. For the full terms, see the file LICENSE which came with
your copy of django-registration; if you did not receive a copy of
this file, you can view it online at
<https://github.com/ubernostrum/django-registration/blob/master/LICENSE>.

What versions of Django and Python are supported?

As of django-registration 2.4.1, Django 1.8, 1.9, 1.10 and
1.11 are supported, on Python 2.7, 3.3 (Django 1.8 only), 3.4, 3.5
and 3.6 (Django 1.11 only). Although Django 1.8 supported Python
3.2 at initial release, Python 3.2 is now at its end-of-life and
django-registration no longer supports it.

I found a bug or want to make an improvement!

The canonical development repository for django-registration
is online at
<https://github.com/ubernostrum/django-registration>. Issues and
pull requests can both be filed there.

If you’d like to contribute to django-registration, that’s
great! Just please remember that pull requests should include
tests and documentation for any changes made, and that following
PEP 8 [https://www.python.org/dev/peps/pep-0008/] is
mandatory. Pull requests without documentation won’t be merged,
and PEP 8 style violations or test coverage below 100% are both
configured to break the build.

How secure is django-registration?

In the nine-year history of django-registration, there have
been no security issues reported which required new releases to
remedy. This doesn’t mean, though, that django-registration is
perfectly secure: much will depend on ensuring best practices in
deployment and server configuration, and there could always be
security issues that just haven’t been recognized yet.

django-registration does, however, try to avoid common security
issues:

	django-registration 2.4.1 only supports versions of
Django which were receiving upstream security support at the time
of release.

	django-registration does not attempt to generate or store
passwords, and does not transmit credentials which could be used
to log in (the only “credential” ever sent out by
django-registration is an activation key used in the two-step
activation workflows, and that key can only be used to make an
account active; it cannot be used to log in).

	django-registration works with Django’s own security features
(including cryptographic features) where possible, rather than
reinventing its own.

For more details, see The security guide.

How do I run the tests?

django-registration makes use of Django’s own built-in
unit-testing tools, and supports several ways to execute its test
suite:

	Within a Django project, invoke manage.py test
registration.

	If you’ve installed django-registration (so that it’s on your
Python import path) and Django, but don’t yet have a project
created or want to test independently of a project, you can run
registration/runtests.py, or you can invoke python
setup.py test (which will run registration/runtests.py).

Additionally, the setup.cfg file included in
django-registration provides configuration for coverage.py [https://coverage.readthedocs.io/], enabling
easy recording and reporting of test coverage.

Installation and setup

How do I install django-registration?

Full instructions are available in the installation guide. For configuration, see the quick start guide.

Does django-registration come with any sample templates I can use right away?

No, for two reasons:

	Providing default templates with an application is ranges from
hard to impossible, because different sites can have such
wildly different design and template structure. Any attempt to
provide templates which would work with all the possibilities
would probably end up working with none of them.

	A number of things in django-registration depend on the
specific registration workflow you use, including the variables
which end up in template contexts. Since django-registration
has no way of knowing in advance what workflow you’re going to
be using, it also has no way of knowing what your templates
will need to look like.

Fortunately, however, django-registration has good documentation
which explains what context variables will be available to
templates, and so it should be easy for anyone who knows Django’s
template system to create templates which integrate with their own
site.

Configuration

Should I used the model-based or HMAC activation workflow?

You’re free to choose whichever one you think best fits your
needs. However, the model-based workflow
is mostly provided for backwards compatibility with older versions
of django-registration; it dates to 2007, and though it is
still as functional as ever, the HMAC workflow has less overhead (i.e., no need to install or
work with any models) due to being able to take advantage of more
modern features in Django.

Do I need to rewrite the views to change the way they behave?

Not always. Any behavior controlled by an attribute on a
class-based view can be changed by passing a different value for
that attribute in the URLConf. See Django’s class-based view
documentation [https://docs.djangoproject.com/en/stable/topics/class-based-views/#simple-usage-in-your-urlconf]
for examples of this.

For more complex or fine-grained control, you will likely want to
subclass RegistrationView or
ActivationView, or both, add your
custom logic to your subclasses, and then create a URLConf which
makes use of your subclasses.

I don’t want to write my own URLconf because I don’t want to write patterns for all the auth views!

You’re in luck, then; django-registration provides a URLconf
which only contains the patterns for the auth views, and which
you can include in your own URLconf anywhere you’d like; it lives
at registration.auth_urls.

I don’t like the names you’ve given to the URL patterns!

In that case, you should feel free to set up your own URLconf
which uses the names you want.

I’m using a custom user model; how do I make that work?

See the custom user documentation.

Tips and tricks

How do I close user signups?

If you haven’t modified the behavior of the
registration_allowed()
method in RegistrationView, you can
use the setting REGISTRATION_OPEN to
control this; when the setting is True, or isn’t supplied,
user registration will be permitted. When the setting is
False, user registration will not pe permitted.

How do I log a user in immediately after registration or activation?

Take a look at the implementation of the one-step workflow, which logs a user in immediately after
registration.

How do I re-send an activation email?

Assuming you’re using the model-based workflow, a custom admin action [http://docs.djangoproject.com/en/stable/ref/contrib/admin/actions/]
is provided for this; in the admin for the
RegistrationProfile model, click the
checkbox for the user(s) you’d like to re-send the email for, then
select the “Re-send activation emails” action.

How do I manually activate a user?

In the model-based workflow, a custom
admin action is provided for this. In the admin for the
RegistrationProfile model, click the checkbox for the user(s)
you’d like to activate, then select the “Activate users” action.

In the HMAC-based workflow, toggle the is_active field of the
user in the admin.

How do I allow Unicode in usernames?

Use Python 3. Django’s username validation allows any word
character plus some additional characters, but the definition of
“word character” depends on the Python version in use. On Python
2, only ASCII will be permitted; on Python 3, usernames containing
word characters matched by a regex with the UNICODE flag will
be accepted.

 Python Module Index

 d |
 r

 		 	

 		
 d	

 	[image: -]
 	
 django	

 	
 	
 django.conf.settings	

 		 	

 		
 r	

 	[image: -]
 	
 registration	

 	
 	
 registration.backends.hmac	

 	
 	
 registration.backends.model_activation	

 	
 	
 registration.backends.simple	

 	
 	
 registration.forms	

 	
 	
 registration.signals	

 	
 	
 registration.validators	

 	
 	
 registration.views	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ACCOUNT_ACTIVATION_DAYS (in module django.conf.settings)

 	activate() (registration.views.ActivationView method)

 	activate_user() (registration.models.RegistrationManager method)

 	ACTIVATED (registration.models.RegistrationProfile attribute)

 	
 	activation_key (registration.models.RegistrationProfile attribute)

 	activation_key_expired() (registration.models.RegistrationProfile method)

 	ActivationView (class in registration.backends.hmac.views)

 	(class in registration.views)

C

 	
 	CA_ADDRESSES (in module registration.validators)

 	create_inactive_user() (registration.backends.hmac.views.RegistrationView method)

 	(registration.models.RegistrationManager method)

 	
 	create_profile() (registration.models.RegistrationManager method)

D

 	
 	DEFAULT_RESERVED_NAMES (in module registration.validators)

 	delete_expired_users() (registration.models.RegistrationManager method)

 	
 	disallowed_url (registration.views.RegistrationView attribute)

 	django.conf.settings (module)

 	DUPLICATE_EMAIL (in module registration.validators)

E

 	
 	email_body_template (registration.backends.hmac.views.RegistrationView attribute)

 	
 	email_subject_template (registration.backends.hmac.views.RegistrationView attribute)

 	expired() (registration.models.RegistrationManager method)

F

 	
 	form_class (registration.views.RegistrationView attribute)

 	
 	FREE_EMAIL (in module registration.validators)

G

 	
 	get_activation_key() (registration.backends.hmac.views.RegistrationView method)

 	get_email_context() (registration.backends.hmac.views.RegistrationView method)

 	get_form_class() (registration.views.RegistrationView method)

 	
 	get_success_url() (registration.views.ActivationView method)

 	(registration.views.RegistrationView method)

 	get_user() (registration.backends.hmac.views.ActivationView method)

N

 	
 	NOREPLY_ADDRESSES (in module registration.validators)

O

 	
 	OTHER_SENSITIVE_NAMES (in module registration.validators)

P

 	
 	PROTOCOL_HOSTNAMES (in module registration.validators)

R

 	
 	register() (registration.views.RegistrationView method)

 	registration.backends.hmac (module)

 	registration.backends.model_activation (module)

 	registration.backends.simple (module)

 	registration.forms (module)

 	registration.signals (module)

 	registration.validators (module)

 	registration.views (module)

 	registration_allowed() (registration.views.RegistrationView method)

 	REGISTRATION_OPEN (in module django.conf.settings)

 	REGISTRATION_SALT (in module django.conf.settings)

 	
 	RegistrationForm (class in registration.forms)

 	RegistrationFormNoFreeEmail (class in registration.forms)

 	RegistrationFormTermsOfService (class in registration.forms)

 	RegistrationFormUniqueEmail (class in registration.forms)

 	RegistrationManager (class in registration.models)

 	RegistrationProfile (class in registration.models)

 	RegistrationView (class in registration.backends.hmac.views)

 	(class in registration.views)

 	RESERVED_NAME (in module registration.validators)

 	ReservedNameValidator (class in registration.validators)

 	RFC_2142 (in module registration.validators)

S

 	
 	send_activation_email() (registration.backends.hmac.views.RegistrationView method)

 	(registration.models.RegistrationProfile method)

 	SENSITIVE_FILENAMES (in module registration.validators)

 	
 	SPECIAL_HOSTNAMES (in module registration.validators)

 	success_url (registration.views.ActivationView attribute)

 	(registration.views.RegistrationView attribute)

T

 	
 	template_name (registration.views.ActivationView attribute)

 	(registration.views.RegistrationView attribute)

 	
 	TOS_REQUIRED (in module registration.validators)

U

 	
 	user (registration.models.RegistrationProfile attribute)

 	
 	user_activated (in module registration.signals)

 	user_registered (in module registration.signals)

V

 	
 	validate_confusables() (in module registration.validators)

 	
 	validate_confusables_email() (in module registration.validators)

 	validate_key() (registration.backends.hmac.views.ActivationView method)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 django-registration 2.4.1

 		
 Installation guide

 		
 Normal installation

 		
 Installing from a source checkout

 		
 Next steps

 		
 Quick start guide

 		
 Configuring the HMAC activation workflow

 		
 Required settings

 		
 Setting up URLs

 		
 Required templates

 		
 Configuring the one-step workflow

 		
 The HMAC activation workflow

 		
 Behavior and configuration

 		
 Views

 		
 How it works

 		
 Comparison to the model-activation workflow

 		
 Security considerations

 		
 The one-step workflow

 		
 Configuration

 		
 Templates

 		
 The model-based activation workflow

 		
 Default behavior and configuration

 		
 How account data is stored for activation

 		
 Base view classes

 		
 Base form classes

 		
 Custom user models

 		
 Overview

 		
 Determining compatibility of a custom user model

 		
 Validation utilities

 		
 Custom settings

 		
 Signals used by django-registration

 		
 Feature and API deprecation cycle

 		
 registration.urls

 		
 registration.backends.default

 		
 registration.auth_urls

 		
 Expired-account cleanup

 		
 Security guide

 		
 Recommendation: use the HMAC workflow

 		
 Restrictions on user names: reserved names

 		
 Restrictions on user names and email addresses: Unicode

 		
 Upgrading from previous versions

 		
 Backends are now class-based views

 		
 URLconf changes

 		
 Template changes

 		
 Changes since 1.0

 		
 Changes since 2.0

 		
 Frequently-asked questions

 		
 General

 		
 Installation and setup

 		
 Configuration

 		
 Tips and tricks

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

