

django-registration 3.3

django-registration is an extensible application providing user
registration functionality for Django [https://www.djangoproject.com/]-powered Web sites.

Although nearly all aspects of the registration process are
customizable, out-of-the-box support is provided for two common use
cases:

	Two-phase registration, consisting of initial signup followed by a
confirmation email with instructions for activating the new account.

	One-phase registration, where a user signs up and is immediately
active and logged in.

To get up and running quickly, install django-registration, then read the quick start guide, which
describes the steps necessary to configure django-registration for the
built-in workflows. For more detailed information, including how to
customize the registration process (and support for alternate
registration systems), read through the documentation listed below.

Installation and configuration

	Installation guide

	Quick start guide

Built-in registration workflows

	The two-step activation workflow

	The one-step workflow

For developers

	Base view classes

	Base form classes

	Custom user models

	Validation utilities

	Exception classes

	Custom settings

	Signals used by django-registration

	Feature and API deprecation cycle

Other documentation

	Security guide

	Upgrading from previous versions

	Frequently-asked questions

See also

	Django’s authentication documentation [https://docs.djangoproject.com/en/stable/topics/auth/]. Django’s
authentication system is used by django-registration’s default
configuration.

 Installation guide

Installation guide

The 3.3 release of django-registration supports Django 3.2 and
4.0 on Python 3.7 (Django 3.2 only), 3.8, 3.9, and 3.10. Note that
Django 3.2’s support for Python 3.10 was added in Django 3.2.9, so you
may experience issues with Python 3.10 and earlier Django 3.2
versions.

Normal installation

The preferred method of installing django-registration is via pip,
the standard Python package-installation tool. If you don’t have
pip, instructions are available for how to obtain and install it [https://pip.pypa.io/en/latest/installing.html], though if you’re
using a supported version of Python, pip should have come bundled
with your installation of Python.

Once you have pip, type:

pip install django-registration

If you don’t have a copy of a compatible version of Django, this will
also automatically install one for you, and will install a third-party
library required by some of django-registration’s validation code.

Installing from a source checkout

If you want to work on django-registration, you can obtain a source
checkout.

The development repository for django-registration is at
<https://github.com/ubernostrum/django-registration>. If you have git [http://git-scm.com/] installed, you can obtain a copy of the
repository by typing:

git clone https://github.com/ubernostrum/django-registration.git

From there, you can use git commands to check out the specific
revision you want, and perform an “editable” install (allowing you to
change code as you work on it) by typing:

pip install -e .

Next steps

To get up and running quickly, check out the quick start guide. For full documentation, see the documentation
index.

 Quick start guide

Quick start guide

First you’ll need to have Django and django-registration
installed; for details on that, see the installation guide.

The next steps will depend on which registration workflow you’d like
to use. There are two workflows built into django-registration:

	The two-step activation workflow, which
implements a two-step process: a user signs up, then is emailed an
activation link and must click it to activate the account.

	The one-step workflow, in which a user
signs up and their account is immediately active and logged in.

If you want a signup process other than what’s provided by these
built-in workflows, please see the documentation for the base
view and form classes, which you can
subclass to implement your own preferred user registration flow and
rules. The guide below covers use of the built-in workflows.

Regardless of which registration workflow you choose to use, you
should add “django_registration” to your
INSTALLED_APPS setting.

Important

Django’s authentication system must be installed

Before proceeding with either of the recommended built-in
workflows, you’ll need to ensure django.contrib.auth has been
installed (by adding it to
INSTALLED_APPS and running manage.py
migrate to install needed database tables). Also, if you’re making
use of a custom user model [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model],
you’ll probably want to pause and read the custom user
compatibility guide before using
django-registration.

 The two-step activation workflow

The two-step activation workflow

The two-step activation workflow, found in
django_registration.backends.activation, implements a two-step
registration process: a user signs up, an inactive account is created,
and an email is sent containing an activation link which must be
clicked to make the account active.

Behavior and configuration

A default URLconf is provided, which you can
include() [https://docs.djangoproject.com/en/stable/ref/urls/#django.urls.include] in your URL configuration; that URLconf
is django_registration.backends.activation.urls. For example, to
place user registration under the URL prefix /accounts/, you could
place the following in your root URLconf:

from django.urls import include, path

urlpatterns = [
 # Other URL patterns ...
 path('accounts/', include('django_registration.backends.activation.urls')),
 path('accounts/', include('django.contrib.auth.urls')),
 # More URL patterns ...
]

That also sets up the views from django.contrib.auth (login, logout,
password reset, etc.).

This workflow makes use of up to three settings (click for details on
each):

	ACCOUNT_ACTIVATION_DAYS

	REGISTRATION_OPEN

	REGISTRATION_SALT (see also note
below)

By default, this workflow uses
RegistrationForm as its form class
for user registration; this can be overridden by passing the keyword
argument form_class to the registration view.

Views

Two views are provided to implement the signup/activation
process. These subclass the base views of django-registration, so anything that can be overridden/customized there can
equally be overridden/customized here. There are some additional
customization points specific to this implementation, which are listed
below.

For an overview of the templates used by these views (other than those
specified below), and their context variables, see the quick
start guide.

	
class django_registration.backends.activation.views.RegistrationView

	A subclass of django_registration.views.RegistrationView
implementing the signup portion of this workflow.

Important customization points unique to this class are:

	
create_inactive_user(form)

	Creates and returns an inactive user account, and calls
send_activation_email() to send the email with the
activation key. The argument form is a valid registration
form instance passed from
register().

	Parameters:

	form (django_registration.forms.RegistrationForm) – The registration form.

	Return type:

	django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]

	
get_activation_key(user)

	Given an instance of the user model, generates and returns an
activation key (a string) for that user account.

	Parameters:

	user (django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]) – The new user account.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_email_context(activation_key)

	Returns a dictionary of values to be used as template context
when generating the activation email.

	Parameters:

	activation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The activation key for the new user account.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
send_activation_email(user)

	Given an inactive user account, generates and sends the
activation email for that account.

	Parameters:

	user (django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]) – The new user account.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
email_body_template

	A string specifying the template to use for the body of the
activation email. Default is
“django_registration/activation_email_body.txt”.

	
email_subject_template

	A string specifying the template to use for the subject of the
activation email. Default is
“django_registration/activation_email_subject.txt”. Note that, to
avoid header-injection vulnerabilities [https://en.wikipedia.org/wiki/Email_injection], the result of
rendering this template will be forced into a single line of
text, stripping newline characters.

	
class django_registration.backends.activation.views.ActivationView

	A subclass of django_registration.views.ActivationView
implementing the activation portion of this workflow.

Errors in activating the user account will raise
ActivationError, with one
of the following values for the exception’s code:

	“already_activated”

	Indicates the account has already been activated.

	“bad_username”

	Indicates the username decoded from the activation key is
invalid (does not correspond to any user account).

	“expired”

	Indicates the account/activation key has expired.

	“invalid_key”

	Generic indicator that the activation key was invalid.

Important customization points unique to this class are:

	
get_user(username)

	Given a username (determined by the activation key), looks up
and returns the corresponding instance of the user model. If no
such account exists, raises
ActivationError as
described above. In the base implementation, checks the
is_active [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User.is_active] field to
avoid re-activating already-active accounts, and raises
ActivationError with code
already_activated to indicate this case.

	Parameters:

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username of the new user account.

	Return type:

	django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]

	Raises:

	django_registration.exceptions.ActivationError – if no
matching inactive user account exists.

	
validate_key(activation_key)

	Given the activation key, verifies that it carries a valid
signature and a timestamp no older than the number of days
specified in the setting ACCOUNT_ACTIVATION_DAYS, and
returns the username from the activation key. Raises
ActivationError, as
described above, if the activation key has an invalid signature
or if the timestamp is too old.

	Parameters:

	activation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The activation key for the new user account.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	django_registration.exceptions.ActivationError – if the
activation key has an invalid signature or is expired.

Note

URL patterns for activation

Although the actual value used in the activation key is the new
user account’s username, the URL pattern for
ActivationView does not need to match all
possible legal characters in a username. The activation key that
will be sent to the user (and thus matched in the URL) is
produced by django.core.signing.dumps() [https://docs.djangoproject.com/en/stable/topics/signing/#django.core.signing.dumps], which
base64-encodes its output. Thus, the only characters this
pattern needs to match are those from the URL-safe base64
alphabet [http://tools.ietf.org/html/rfc4648#section-5], plus
the colon (”:”) which is used as a separator.

The default URL pattern for the activation view in
django_registration.backends.activation.urls handles this for
you.

 The one-step workflow

The one-step workflow

As an alternative to the two-step (registration and activation)
workflow, django-registration bundles a
one-step registration workflow in
django_registration.backends.one_step. This workflow consists of
as few steps as possible:

	A user signs up by filling out a registration form.

	The user’s account is created and is active immediately, with no
intermediate confirmation or activation step.

	The new user is logged in immediately.

Configuration

To use this workflow, include the URLconf
django_registration.backends.one_step.urls somewhere in your site’s
own URL configuration. For example:

from django.urls import include, path

urlpatterns = [
 # Other URL patterns ...
 path('accounts/', include('django_registration.backends.one_step.urls')),
 path('accounts/', include('django.contrib.auth.urls')),
 # More URL patterns ...
]

To control whether registration of new accounts is allowed, you can
specify the setting REGISTRATION_OPEN.

Upon successful registration, the user will be redirected to the
site’s home page – the URL /. This can be changed by subclassing
django_registration.backends.one_step.views.RegistrationView
and overriding the method
get_success_url()
or setting the attribute
success_url. You
can also do this in a URLconf. For example:

from django.conf.urls import include, url

from django_registration.backends.one_step.views import RegistrationView

urlpatterns = [
 # Other URL patterns ...
 path('accounts/register/',
 RegistrationView.as_view(success_url='/profile/'),
 name='django_registration_register'),
 path('accounts/', include('django_registration.backends.one_step.urls')),
 path('accounts/', include('django.contrib.auth.urls')),
 # More URL patterns ...
]

The default form class used for account registration will be
django_registration.forms.RegistrationForm, although this can
be overridden by supplying a custom URL pattern for the registration
view and passing the keyword argument form_class, or by subclassing
django_registration.backends.one_step.views.RegistrationView
and either overriding
form_class or
implementing
get_form_class(),
and specifying the custom subclass in your URL patterns.

Templates

The one-step workflow uses two templates:

	django_registration/registration_form.html.

	django_registration/registration_closed.html

See the quick start guide for details
of these templates.

 Base view classes

Base view classes

In order to allow the utmost flexibility in customizing and supporting
different workflows, django-registration makes use of Django’s
support for class-based views [https://docs.djangoproject.com/en/stable/topics/class-based-views/]. Included
in django-registration are two base classes which can be
subclassed to implement many types of registration workflows.

The built-in workflows in django-registration provide their own
subclasses of these views, and the documentation for those workflows
will indicate customization points specific to those subclasses. The
following reference covers useful attributes and methods of the base
classes, for use in writing your own custom registration workflows.

	
class django_registration.views.RegistrationView

	A subclass of Django’s FormView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-editing/#django.views.generic.edit.FormView]
which provides the infrastructure for supporting user registration.

Standard attributes and methods of
FormView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-editing/#django.views.generic.edit.FormView] can be overridden to
control behavior as described in Django’s documentation, with the
exception of get_success_url(), which must use the signature
documented below.

When writing your own subclass, one method is required:

	
register(form)

	Implement your registration logic here. form will be the
(already-validated) form filled out by the user during the
registration process (i.e., a valid instance of
RegistrationForm or a subclass of
it).

This method should return the newly-registered user instance,
and should send the signal
django_registration.signals.user_registered. Note that this is
not automatically done for you when writing your own custom
subclass, so you must send this signal manually.

	Parameters:

	form (django_registration.forms.RegistrationForm) – The registration form to use.

	Return type:

	django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]

Useful optional places to override or customize on subclasses are:

	
disallowed_url

	The URL to redirect to when registration is disallowed. Can be a
hard-coded string, the string resulting from calling Django’s
reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse] helper, or the lazy object produced
by Django’s reverse_lazy() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse_lazy] helper. Default
value is the result of calling reverse_lazy() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse_lazy]
with the URL name ‘registration_disallowed’.

	
form_class

	The form class to use for user registration. Can be overridden
on a per-request basis (see below). Should be the actual class
object; by default, this class is
django_registration.forms.RegistrationForm.

	
success_url

	The URL to redirect to after successful registration. Can be a
hard-coded string, the string resulting from calling Django’s
reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse] helper, or the lazy object produced
by Django’s reverse_lazy() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse_lazy] helper. Can be
overridden on a per-request basis (see below). Default value is
None; subclasses must override and provide this.

	
template_name

	The template to use for user registration. Should be a
string. Default value is
‘django_registration/registration_form.html’.

	
get_form_class()

	Select a form class to use on a per-request basis. If not
overridden, will use form_class. Should be the actual
class object.

	Return type:

	django_registration.forms.RegistrationForm

	
get_success_url(user)

	Return a URL to redirect to after successful registration, on a
per-request or per-user basis. If not overridden, will use
success_url. Should return a value of the same type as
success_url (see above).

	Parameters:

	user (django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]) – The new user account.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
registration_allowed()

	Should indicate whether user registration is allowed, either in
general or for this specific request. Default value is the value
of the setting REGISTRATION_OPEN.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class django_registration.views.ActivationView

	A subclass of Django’s
TemplateView [https://docs.djangoproject.com/en/stable/ref/class-based-views/base/#django.views.generic.base.TemplateView] which provides
support for a separate account-activation step, in workflows which
require that.

One method is required:

	
activate(*args, **kwargs)

	Implement your activation logic here. You are free to configure
your URL patterns to pass any set of positional or keyword
arguments to ActivationView, and they will in turn be
passed to this method.

This method should return the newly-activated user instance (if
activation was successful), or raise
ActivationError (if
activation was not successful).

	Return type:

	django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]

	Raises:

	django_registration.exceptions.ActivationError – if activation fails.

Useful places to override or customize on an
ActivationView subclass are:

	
success_url

	The URL to redirect to after successful activation. Can be a
hard-coded string, the string resulting from calling Django’s
reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse] helper, or the lazy object produced
by Django’s reverse_lazy() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse_lazy] helper. Can be
overridden on a per-request basis (see below). Default value is
None; subclasses must override and provide this.

	
template_name

	The template to use after failed user activation. Should be a
string. Default value is
‘django_registration/activation_failed.html’.

	
get_success_url(user)

	Return a URL to redirect to after successful activation, on a
per-request or per-user basis. If not overridden, will use
success_url. Should return a value of the same type as
success_url (see above).

	Parameters:

	user (django.contrib.auth.models.AbstractUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractUser]) – The activated user account.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

 Base form classes

Base form classes

Several form classes are provided with django-registration,
covering common cases for gathering account information and
implementing common constraints for user registration. These forms
were designed with django-registration’s built-in registration
workflows in mind, but may also be useful in other situations.

	
class django_registration.forms.RegistrationForm

	A form for registering an account. This is a subclass of Django’s
built-in UserCreationForm [https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.UserCreationForm], and
has the following fields, all of which are required:

	username

	The username to use for the new account.

	email

	The email address to use for the new account.

	password1

	The password to use for the new account.

	password2

	The password to use for the new account, repeated to catch
typos.

Note

Validation of usernames

Django supplies a default regex-based validator for usernames in
its base AbstractBaseUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser]
implementation, allowing any word character along with the
following set of additional characters: ., @, +, and
-.

Because it’s a subclass of Django’s
UserCreationForm [https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.forms.UserCreationForm],
RegistrationForm will inherit the base validation
defined by Django. It also applies some custom validators to the
username:
ReservedNameValidator,
and
validate_confusables().

 Custom user models

Custom user models

Django’s built-in auth system provides a default model for user
accounts, but also supports replacing that default with a custom user
model [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model]. Many
projects choose to use a custom user model from the start of their
development, even if it begins as a copy of the default model, in
order to avoid the difficulty of migrating to a custom user model
later on.

In general, django-registration will work with a custom user model,
though at least some additional configuration is always required in
order to do so. If you are using a custom user model, please read this
document thoroughly before using django-registration, in order to
ensure you’ve taken all the necessary steps to ensure support.

The process for using a custom user model with django-registration can
be summarized as follows:

	Compare your custom user model to the assumptions made by the
built-in registration workflows.

	If your user model is compatible with those assumptions, write a
short subclass of
RegistrationForm pointed at
your user model, and instruct django-registration to use that form.

	If your user model is not compatible with those assumptions,
either write subclasses of the appropriate views in
django-registration which will be compatible with your user model,
or modify your user model to be compatible with the built-in views.

These steps are covered in more detail below.

Compatibility of the built-in workflows with custom user models

Django provides a number of helpers to make it easier for code to
generically work with custom user models, and django-registration
makes use of these. However, the built-in registration workflows must
still make some assumptions about the structure of your user model
in order to work with it. If you intend to use one of
django-registration’s built-in registration workflows, please
carefully read the appropriate section to see what it expects from
your user model.

The two-step activation workflow

The two-step activation workflow requires
that the following be true of your user model:

	Your user model must set the attribute
USERNAME_FIELD [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD] to
indicate the field used as the username.

	Your user model must have a field (of some textual type, ideally
EmailField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.EmailField]) for storing an email address,
and it must define the method
get_email_field_name() [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser.get_email_field_name]
to indicate the name of the email field.

	The username and email fields must be distinct. If you wish to use
the email address as the username, you will need to write your own
completely custom registration form.

	Your user model must have a field named
is_active [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User.is_active], and that field
must be a BooleanField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.BooleanField] indicating whether
the user’s account is active.

If your user model is a subclass of Django’s
AbstractBaseUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser], all of the
above will be automatically handled for you.

If your custom user model defines additional fields beyond the minimum
requirements, you’ll either need to ensure that all of those fields
are optional (i.e., can be NULL in your database, or provide a
suitable default value defined in the model), or specify the correct
list of fields to display in your
RegistrationForm subclass.

The one-step workflow

The one-step workflow places the following
requirements on your user model:

	Your user model must set the attribute
USERNAME_FIELD [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD] to
indicate the field used as the username.

	It must define a textual field named password for storing the
user’s password.

Also note that the base
RegistrationForm includes and
requires an email field, so either provide that field on your model
and set the
get_email_field_name() [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser.get_email_field_name]
attribute to indicate which field it is, or subclass
RegistrationForm and override to
remove the email field or make it optional.

If your user model is a subclass of Django’s
AbstractBaseUser [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser], all of the
above will be automatically handled for you.

If your custom user model defines additional fields beyond the minimum
requirements, you’ll either need to ensure that all of those fields
are optional (i.e., can be NULL in your database, or provide a
suitable default value defined in the model), or specify the correct
list of fields to display in your
RegistrationForm subclass.

Because the one-step workflow logs in the new account immediately
after creating it, you also must either use Django’s
ModelBackend [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend] as an
authentication backend [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#other-authentication-sources],
or use an authentication backend which accepts a combination of
USERNAME_FIELD and password as sufficient credentials to
authenticate a user.

Writing your form subclass

The base RegistrationView contains
code which compares the declared model of your registration form with
the user model of your Django installation. If these are not the same
model, the view will deliberately crash by raising an
ImproperlyConfigured [https://docs.djangoproject.com/en/stable/ref/exceptions/#django.core.exceptions.ImproperlyConfigured] exception, with an
error message alerting you to the problem.

This will happen automatically if you attempt to use
django-registration with a custom user model and also attempt to use
the default, unmodified
RegistrationForm. This is, again,
a deliberate design feature of django-registration, and not a bug:
django-registration has no way of knowing in advance if your user
model is compatible with the assumptions made by the built-in
registration workflows (see above), so it requires you to take the
explicit step of replacing the default registration form as a way of
confirming you’ve manually checked the compatibility of your user
model.

In the case where your user model is compatible with the default
behavior of django-registration, you will be able to subclass
RegistrationForm, set it to use
your custom user model as the model, and then configure the views in
django-registration to use your form subclass. For example, you might
do the following (in a forms.py module somewhere in your codebase –
do not directly edit django-registration’s code):

from django_registration.forms import RegistrationForm

from mycustomuserapp.models import MyCustomUser

class MyCustomUserForm(RegistrationForm):
 class Meta(RegistrationForm.Meta):
 model = MyCustomUser

You may also need to specify the fields to include in the form, if the
set of fields to include is different from the default set specified
by the base RegistrationForm.

Then in your URL configuration (example here uses the two-step
activation workflow), configure the registration view to use the form
class you wrote:

from django.urls import include, path

from django_registration.backends.activation.views import RegistrationView

from mycustomuserapp.forms import MyCustomUserForm

urlpatterns = [
 # ... other URL patterns here
 path('accounts/register/',
 RegistrationView.as_view(
 form_class=MyCustomUserForm
),
 name='django_registration_register',
),
 path('accounts/',
 include('django_registration.backends.activation.urls')
),
 # ... more URL patterns
]

Incompatible user models

If your custom user model is not compatible with the built-in
workflows of django-registration, you have several options.

One is to subclass the built-in form and view classes of
django-registration and make the necessary adjustments to achieve
compatibility with your user model. For example, if you want to use
the two-step activation workflow, but your user model uses a
completely different way of marking accounts active/inactive (compared
to the the assumed is_active field), you might write subclasses of
that workflow’s
RegistrationView
and
ActivationView
which make use of your user model’s mechanism for marking accounts
active/inactive, and then use those views along with an appropriate
subclass of RegistrationForm.

Or, if the incompatibilities are relatively minor and you don’t mind
making the change, you might use Django’s migration framework to
adjust your custom user model to match the assumptions made by
django-registration’s built-in workflows, thus allowing them to be
used unmodified.

Finally, it may sometimes be the case that a given user model requires
a completely custom set of form and view classes to
support. Typically, this will also involve an account-registration
process far enough from what django-registration’s built-in workflows
provide that you would be writing your own workflow in any case.

 Validation utilities

Validation utilities

To ease the process of validating user registration data,
django-registration includes some validation-related data and
utilities.

Error messages

Several error messages are available as constants. All of them are
marked for translation; most have translations already provided in
django-registration.

	
django_registration.validators.DUPLICATE_EMAIL

	Error message raised by
RegistrationFormUniqueEmail when the
supplied email address is not unique.

	
django_registration.validators.DUPLICATE_USERNAME

	Error message raised by
CaseInsensitiveValidator
when the supplied username is not unique. This is the same string
raised by Django’s default
User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User] model for a non-unique
username.

	
django_registration.validators.RESERVED_NAME

	Error message raised by
ReservedNameValidator when it is
given a value that is a reserved name.

	
django_registration.validators.TOS_REQUIRED

	Error message raised by
RegistrationFormTermsOfService when
the terms-of-service field is not checked.

Rejecting “reserved” usernames

By default, django-registration treats some usernames as reserved.

Note

Why reserved names are reserved

Many Web applications enable per-user URLs (to display account
information), and some may also create email addresses or even
subdomains, based on a user’s username. While this is often useful,
it also represents a risk: a user might register a name which
conflicts with an important URL, email address or subdomain, and
this might give that user control over it.

django-registration includes a list of reserved names, and rejects
them as usernames by default, in order to avoid this issue.

 Exception classes

Exception classes

django-registration provides two base exception classes to signal
errors which occur during the signup or activation processes.

	
exception django_registration.exceptions.RegistrationError(message, code, params)

	Base exception class for all exceptions raised in
django-registration. No code in django-registration will raise this
exception directly; it serves solely to provide a distinguishing
parent class for other errors. Arguments passed when the exception
is raised will be stored and exposed as attributes of the same
names on the exception object:

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – A human-readable error message.

	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – A short but unique identifier used by subclasses
to distinguish different error conditions.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arbitrary key-value data to associate with the error.

	
exception django_registration.exceptions.ActivationError(message, code, params)

	Exception class to indicate errors during account
activation. Subclass of RegistrationError and inherits its
attributes.

 Custom settings

Custom settings

Although the choice of registration workflow does not necessarily
require changes to your Django settings (as registration workflows are
selected by including the appropriate URL patterns in your root
URLconf), the built-in workflows of django-registration make use
of several custom settings.

	
django.conf.settings.ACCOUNT_ACTIVATION_DAYS

	An int [https://docs.python.org/3/library/functions.html#int] indicating how long (in days) after signup an
account has in which to activate.

Used by:

	The two-step activation workflow

	
django.conf.settings.REGISTRATION_OPEN

	A bool [https://docs.python.org/3/library/functions.html#bool] indicating whether registration of new accounts is
currently permitted.

A default of True is assumed when this setting is not supplied,
so specifying it is optional unless you want to temporarily close
registration (in which case, set it to False).

Used by:

	The two-step activation workflow

	The one-step workflow

Third-party workflows wishing to use an alternate method of
determining whether registration is allowed should subclass
django_registration.views.RegistrationView (or a subclass of it
from an existing workflow) and override
registration_allowed().

	
django.conf.settings.REGISTRATION_SALT

	A str [https://docs.python.org/3/library/stdtypes.html#str] used as an additional “salt” in the process of
generating signed activation keys.

This setting is optional, and a default of “registration” will
be used if not specified. The value of this setting does not need
to be kept secret; see the note about this salt value and
security for details.

Used by:

	The two-step activation workflow

 Signals used by django-registration

Signals used by django-registration

Much of django-registration’s customizability comes through the
ability to write and use different workflows for user
registration. However, there are many cases where only a small bit of
additional logic needs to be injected into the registration process,
and writing a custom workflow to support this represents an
unnecessary amount of work. A more lightweight customization option is
provided through two custom signals which the built-in registration
workflows send, and custom workflows are encouraged to send, at
specific points during the registration process; functions listening
for these signals can then add whatever logic is needed.

For general documentation on signals and the Django dispatcher,
consult Django’s signals documentation [http://docs.djangoproject.com/en/stable/topics/signals/]. This
documentation assumes that you are familiar with how signals work and
the process of writing and connecting functions which will listen for
signals.

	
django_registration.signals.user_activated

	Sent when a user account is activated (not applicable to all
workflows). Provides the following arguments:

	sender

	The ActivationView subclass used
to activate the user.

	user

	A user-model instance representing the activated account.

	request

	The HttpRequest [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest] in which the account was
activated.

This signal is automatically sent for you by the base
ActivationView, so unless
you’ve overridden its
get() method in a
subclass you should not need to explicitly send it.

	
django_registration.signals.user_registered

	Sent when a new user account is registered. Provides the following
arguments:

	sender

	The RegistrationView subclass used
to register the account.

	user

	A user-model instance representing the new account.

	request

	The HttpRequest [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest] in which the new account
was registered.

This signal is not automatically sent for you by the base
RegistrationView. It is sent by
the subclasses implemented for the three included registration
workflows, but if you write your own subclass of
RegistrationView, you’ll need
to send this signal as part of the implementation of the
register()
method.

 Feature and API deprecation cycle

Feature and API deprecation cycle

This document will list any features or APIs of django-registration
which are deprecated and scheduled to be removed in future releases.

As of 3.3, no features or APIs are currently deprecated.

 Security guide

Security guide

Important

Reporting security issues

If you believe you have found a security issue in
django-registration, please do not use the public GitHub issue
tracker to report it. Instead, you can contact the author
privately [https://www.b-list.org/contact/] to report the issue.

 Upgrading from previous versions

Upgrading from previous versions

The current release series of django-registration is the 3.x series,
which is not backwards-compatible with the django-registration 2.x
release series.

Changes within the 3.x series

Within the 3.x release series, there have been several minor changes
and improvements, documented here along with the version in which they
occurred.

django-registration 3.3

This release contains no new features or bugfixes. The supported
Python and Django versions are changed to:

	Django 3.2 and 4.0, on Python 3.7 (Django 3.2 only), 3.8, 3.9, and 3.10.

django-registration 3.2

This release contains no new features or bugfixes. The supported
Python and Django versions are changed to:

	Django 2.2, 3.1, and 3.2, on Python 3.6, 3.7, 3.8, and 3.9.

Python 3.5 reached the end of its upstream support cycle in September
2020, and is no longer supported. Django 3.0 reached the end of its
upstream support cycle in May 2021, and is no longer supported.

django-registration 3.1.2

This release fixes a security issue with low severity.

Prior to 3.1.2, django-registration did not apply Django’s
sensitive_post_parameters() [https://docs.djangoproject.com/en/stable/howto/error-reporting/#django.views.decorators.debug.sensitive_post_parameters]
decorator to the base
RegistrationView. This meant that
if detailed error reports, such as Django’s error reports emailed to
site staff [https://docs.djangoproject.com/en/3.1/howto/error-reporting/#email-reports],
were enabled, and a server-side error occurred during account
registration, the generated error report would include all fields
submitted in the HTTP request, some of which are potentially sensitive
depending on the user-account model and registration workflow in use.

This issue is CVE-2021-21416 and GitHub security advisory
GHSA-58c7-px5v-82hh.

Thanks to Martin Morgenstern for reporting this issue.

Django-registration 3.1

	When an attempt was made to use django-registration with a custom
user model, but without explicitly subclassing
RegistrationForm to point to
that user model, previously the result would be a cryptic exception
and error message raised from within Django, complaining about
trying to work with the swapped-out user
model. RegistrationView now
explicitly raises
ImproperlyConfigured [https://docs.djangoproject.com/en/stable/ref/exceptions/#django.core.exceptions.ImproperlyConfigured] with an
informative error message to make it clear what has happened, and
directs the developer to the documentation for using custom user
models in django-registration.

	A new validator,
HTML5EmailValidator, is
included and is applied by default to the email field of
RegistrationForm. The HTML5
email address grammar is more restrictive than the RFC grammar, but
primarily in disallowing rare and problematic features.

	Support for Python 2 was dropped, as Python 2 is EOL as of
2020-01-01. As a result, support for Django 1.11 (EOL April 2020)
was also dropped; the minimum supported Django version is now 2.2.

django-registration 3.0.1

	The custom validators are now serializable.

	Although no code changes were required, this release officially
marks itself compatible with Python 3.7 and with django 2.2.

Changes between django-registration 2.x and 3.x

Module renaming

Prior to 3.x, django-registration installed a Python module named
registration. To avoid silent incompatibilities, and to conform to
more recent best practices, django-registration 3.x now installs a
module named django_registration. Attempts to import from the
registration module will immediately fail with ImportError [https://docs.python.org/3/library/exceptions.html#ImportError].

Many installations will be able to adapt by replacing references to
registration with references to django_registration.

Removal of model-based workflow

The two-step model-based signup workflow, which has been present since
the first public release of django-registration in 2007, has now been
removed. In its place, it is recommended that you use the
two-step activation workflow instead, as that
workflow requires no server-side storage of additional data beyond the
user account itself.

Renaming of two-step activation workflow

The two-step activation workflow was
previously found at registration.backends.hmac; it has been
renamed and is now found at registration.backends.activation.

Renaming of one-step workflow

The one-step workflow was previously found
at registration.backends.simple; it has been renamed and is now
found at registration.backends.one_step.

Removal of auth URLs

Prior to 3.x, django-registration’s default URLconf modules for its
built-in workflows would attempt to include the Django auth views
(login, logout, password reset, etc.) for you. This became untenable
with the rewrite of Django’s auth views to be class-based, as it
required detecting the set of auth views and choosing a set of URL
patterns at runtime.

As a result, auth views are no longer automatically configured for
you; if you want them, include() [https://docs.djangoproject.com/en/stable/ref/urls/#django.urls.include] the URLconf
django.contrib.auth.urls at a location of your choosing.

Distinguishing activation failure conditions

Prior to 3.x, failures to activate a user account (in workflows which
use activation) all simply returned None in place of the activated
account. This meant it was not possible to determine, from inspecting
the result, what exactly caused the failure.

In django-registration 3.x, activation failures raise an exception –
ActivationError – with a
message and code (such as “expired”), to indicate the cause of
failure. This exception is caught by
ActivationView and turned into the
template context variable activation_error.

Changes to custom user support

Support for custom user models has been brought more in line with the
features Django offers. This affects compatibility of custom user
models with django-registration’s default forms and views. In
particular, custom user models should now provide, in addition to
USERNAME_FIELD, the
get_username() [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser.get_username] and
get_email_field_name() [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser.get_email_field_name]
methods. See the custom user documentation for
details.

Changes to success_url

Both the registration and activation views mimic Django’s own generic
views in supporting a choice of ways to specify where to redirect
after a successful registration or activation; you can either set the
attribute
success_url on the
view class, or implement the method
get_success_url()
. However, there is a key difference between the base Django
generic-view version of this, and the version in django-registration:
when calling a
get_success_url()
method, django-registration passes the user account as an argument.

This is incompatible with the behavior of Django’s base
FormMixin [https://docs.djangoproject.com/en/stable/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin], which expects
get_success_url() [https://docs.djangoproject.com/en/stable/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin.get_success_url] to take
zero arguments.

Also, earlier versions of django-registration allowed
success_url and
get_success_url() to
provide either a string URL, or a tuple of (viewname, args,
kwargs) to pass to Django’s reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse] helper, in
order to work around issues caused by calling
reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse] at the level of a class attribute.

In django-registration 3.x, the user argument to
get_success_url() is
now optional, meaning FormMixin [https://docs.djangoproject.com/en/stable/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin]’s
default behavior is now compatible with any
get_success_url()
implementation that doesn’t require the user object; as a result,
implementations which don’t rely on the user object should either
switch to specifying
success_url as an
attribute, or change their own signature to get_success_url(self,
user=None).

Also, the ability to supply the 3-tuple of arguments for
reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse] has been removed; both
success_url and
get_success_url()
now must be/return either a string, or a lazy object that resolves
to a string. To avoid class-level calls to
reverse() [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse], use django.urls.reverse_lazy()
instead.

Removed “no free email” form

Earlier versions of django-registration included a form class,
RegistrationFormNoFreeEmail, which attempted to forbid user
signups using common free/throwaway email providers. Since this is a
pointless task (the number of possible domains of such providers is
ever-growing), this form class has been removed.

Template names

Since django-registration’s Python module has been renamed from
registration to django_registration, its default template
folder has also been renamed, from registration to
django_registration. Additionally, the following templates have
undergone name changes:

	The default template name for the body of the activation email in
the two-step activation workflow is now
django_registration/activation_email_body.txt (previously, it
was registration/activation_email.txt)

	The default template name for
ActivationView and its
subclasses is now django_registration/activation_failed.html
(previously, it was registration/activate.html).

Renaming of URL patterns

Prior to 3.x, django-registration’s included URLconf modules provided
URL pattern names beginning with “registration”. For example:
“registration_register”. In 3.x, these are all renamed to begin
with “django_registration”. For example:
“django_registration_register”.

Removal of cleanupregistration management command

The “cleanupregistration” management command, and the
RegistrationProfile.objects.delete_expired_users() and
RegistrationProfile.objects.expired() methods, were removed
in django-registration 3.0.
Deployments which need a way to identify and delete
expired accounts should determine how they wish to do so
and implement their own methods for this.

Other changes

The URLconf registration.urls has been removed; it was an alias
for the URLconf of the model-based workflow, which has also been
removed.

The compatibility alias registration.backends.default, which also
pointed to the model-based workflow, has been removed.

Changes during the 2.x release series

One major change occurred between django-registration 2.0 and 2.1: the
addition in version 2.1 of the
ReservedNameValidator, which is now
used by default on RegistrationForm and
its subclasses.

This is technically backwards-incompatible, since a set of usernames
which previously could be registered now cannot be registered, but was
included because the security benefits outweigh the edge cases of the
now-disallowed usernames. If you need to allow users to register with
usernames forbidden by this validator, see its documentation for notes
on how to customize or disable it.

In 2.2, the behavior of the RegistrationProfile.expired() method
was clarified to accommodate user expectations; it does not return
(and thus, RegistrationProfile.delete_expired_users() does not
delete) profiles of users who had successfully activated.

In django-registration 2.3, the new validators
validate_confusables() and
validate_confusables_email() were
added, and are applied by default to the username field and email
field, respectively, of registration forms. This may cause some
usernames which previously were accepted to no longer be accepted, but
like the reserved-name validator this change was made because its
security benefits significantly outweigh the edge cases in which it
might disallow an otherwise-acceptable username or email address. If
for some reason you need to allow registration with usernames or email
addresses containing potentially dangerous use of Unicode, you can
subclass the registration form and remove these validators, though
doing so is not recommended.

Versions prior to 2.0

A 1.0 release of django-registration existed, but the 2.x series was
compatible with it.

Prior to 1.0, the most widely-adopted version of django-registration
was 0.8; the changes from 0.8 to 2.x were large and significant, and
if any installations on 0.8 still exist and wish to upgrade to more
recent versions, it is likely the most effective route will be to
discard all code using 0.8 and start over from scratch with a 3.x
release.

 Frequently-asked questions

Frequently-asked questions

The following are miscellaneous common questions and answers related
to installing/using django-registration, culled from bug reports,
emails and other sources.

General

This doesn’t work with custom user models! It crashes as soon as I try to use one!

django-registration can work perfectly well with a custom user model,
but this does require you to do a bit more work. Please thoroughly
read the documentation for how to use custom user models before filing a bug.

Please also note that, as explained in that documentation, by default
django-registration will crash if you try to use a custom user model
without following the documentation. This is not a bug; it is done
deliberately to ensure you read and follow the documentation.

How can I support social-media and other auth schemes, like Facebook or GitHub?

By using django-allauth [https://pypi.python.org/pypi/django-allauth]. No single application
can or should provide a universal API for every authentication system
ever developed; django-registration sticks to making it easy to
implement typical signup workflows using Django’s default model-based
authentication system, while apps like django-allauth handle
integration with third-party authentication services far more
effectively.

What license is django-registration under?

django-registration is offered under a three-clause BSD-style license;
this is an OSI-approved open-source license [http://www.opensource.org/licenses/bsd-license.php], and allows you
a large degree of freedom in modifying and redistributing the
code. For the full terms, see the file LICENSE which came with
your copy of django-registration; if you did not receive a copy of
this file, you can view it online at
<https://github.com/ubernostrum/django-registration/blob/master/LICENSE>.

What versions of Django and Python are supported?

As of django-registration 3.3, Django 3.2 and 4.0 are
supported, on Python 3.7 (Django 3.2 only), 3.8, 3.9, and 3.10. Note
that Django 3.2’s support for Python 3.10 was added in Django 3.2.9,
so you may experience issues with Python 3.10 and earlier Django 3.2
versions.

I found a bug or want to make an improvement!

Important

Reporting security issues

If you believe you have found a security issue in
django-registration, please do not use the public GitHub issue
tracker to report it. Instead, you can contact the author
privately [https://www.b-list.org/contact/] to report the issue.

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django	

 	
 	
 django.conf.settings	

 	[image: -]
 	
 django_registration	

 	
 	
 django_registration.backends.activation	

 	
 	
 django_registration.backends.one_step	

 	
 	
 django_registration.exceptions	

 	
 	
 django_registration.forms	

 	
 	
 django_registration.signals	

 	
 	
 django_registration.validators	

 	
 	
 django_registration.views	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ACCOUNT_ACTIVATION_DAYS (in module django.conf.settings)

 	activate() (django_registration.views.ActivationView method)

 	
 	ActivationError

 	ActivationView (class in django_registration.backends.activation.views)

 	(class in django_registration.views)

C

 	
 	CA_ADDRESSES (in module django_registration.validators)

 	
 	CaseInsensitiveUnique (class in django_registration.validators)

 	create_inactive_user() (django_registration.backends.activation.views.RegistrationView method)

D

 	
 	DEFAULT_RESERVED_NAMES (in module django_registration.validators)

 	disallowed_url (django_registration.views.RegistrationView attribute)

 	django.conf.settings (module)

 	django_registration.backends.activation (module)

 	django_registration.backends.one_step (module)

 	django_registration.exceptions (module)

 	
 	django_registration.forms (module)

 	django_registration.signals (module)

 	django_registration.validators (module)

 	django_registration.views (module)

 	DUPLICATE_EMAIL (in module django_registration.validators)

 	DUPLICATE_USERNAME (in module django_registration.validators)

E

 	
 	email_body_template (django_registration.backends.activation.views.RegistrationView attribute)

 	
 	email_subject_template (django_registration.backends.activation.views.RegistrationView attribute)

F

 	
 	form_class (django_registration.views.RegistrationView attribute)

G

 	
 	get_activation_key() (django_registration.backends.activation.views.RegistrationView method)

 	get_email_context() (django_registration.backends.activation.views.RegistrationView method)

 	get_form_class() (django_registration.views.RegistrationView method)

 	
 	get_success_url() (django_registration.views.ActivationView method)

 	(django_registration.views.RegistrationView method)

 	get_user() (django_registration.backends.activation.views.ActivationView method)

H

 	
 	HTML5EmailValidator (class in django_registration.validators)

N

 	
 	NOREPLY_ADDRESSES (in module django_registration.validators)

O

 	
 	OTHER_SENSITIVE_NAMES (in module django_registration.validators)

P

 	
 	PROTOCOL_HOSTNAMES (in module django_registration.validators)

R

 	
 	register() (django_registration.views.RegistrationView method)

 	registration_allowed() (django_registration.views.RegistrationView method)

 	REGISTRATION_OPEN (in module django.conf.settings)

 	REGISTRATION_SALT (in module django.conf.settings)

 	RegistrationError

 	RegistrationForm (class in django_registration.forms)

 	RegistrationFormCaseInsensitive (class in django_registration.forms)

 	
 	RegistrationFormTermsOfService (class in django_registration.forms)

 	RegistrationFormUniqueEmail (class in django_registration.forms)

 	RegistrationView (class in django_registration.backends.activation.views)

 	(class in django_registration.views)

 	RESERVED_NAME (in module django_registration.validators)

 	ReservedNameValidator (class in django_registration.validators)

 	RFC_2142 (in module django_registration.validators)

S

 	
 	send_activation_email() (django_registration.backends.activation.views.RegistrationView method)

 	SENSITIVE_FILENAMES (in module django_registration.validators)

 	
 	SPECIAL_HOSTNAMES (in module django_registration.validators)

 	success_url (django_registration.views.ActivationView attribute)

 	(django_registration.views.RegistrationView attribute)

T

 	
 	template_name (django_registration.views.ActivationView attribute)

 	(django_registration.views.RegistrationView attribute)

 	
 	TOS_REQUIRED (in module django_registration.validators)

U

 	
 	user_activated (in module django_registration.signals)

 	
 	user_registered (in module django_registration.signals)

V

 	
 	validate_confusables() (in module django_registration.validators)

 	
 	validate_confusables_email() (in module django_registration.validators)

 	validate_key() (django_registration.backends.activation.views.ActivationView method)

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 django-registration 3.3

 		
 Installation guide

 		
 Normal installation

 		
 Installing from a source checkout

 		
 Next steps

 		
 Quick start guide

 		
 Configuring the two-step activation workflow

 		
 Required settings

 		
 Setting up URLs

 		
 Required templates

 		
 Configuring the one-step workflow

 		
 The two-step activation workflow

 		
 Behavior and configuration

 		
 Views

 		
 How it works

 		
 Security considerations

 		
 The one-step workflow

 		
 Configuration

 		
 Templates

 		
 Base view classes

 		
 Base form classes

 		
 Custom user models

 		
 Compatibility of the built-in workflows with custom user models

 		
 The two-step activation workflow

 		
 The one-step workflow

 		
 Writing your form subclass

 		
 Incompatible user models

 		
 Validation utilities

 		
 Error messages

 		
 Rejecting “reserved” usernames

 		
 Protecting against homograph attacks

 		
 Other validators

 		
 Exception classes

 		
 Custom settings

 		
 Signals used by django-registration

 		
 Feature and API deprecation cycle

 		
 Security guide

 		
 Recommendation: use the two-step activation workflow

 		
 Restrictions on user names: reserved names

 		
 Restrictions on user names and email addresses: Unicode

 		
 Additional steps to secure user accounts

 		
 Upgrading from previous versions

 		
 Changes within the 3.x series

 		
 django-registration 3.3

 		
 django-registration 3.2

 		
 django-registration 3.1.2

 		
 Django-registration 3.1

 		
 django-registration 3.0.1

 		
 Changes between django-registration 2.x and 3.x

 		
 Module renaming

 		
 Removal of model-based workflow

 		
 Renaming of two-step activation workflow

 		
 Renaming of one-step workflow

 		
 Removal of auth URLs

 		
 Distinguishing activation failure conditions

 		
 Changes to custom user support

 		
 Changes to success_url

 		
 Removed “no free email” form

 		
 Template names

 		
 Renaming of URL patterns

 		
 Removal of cleanupregistration management command

 		
 Other changes

 		
 Changes during the 2.x release series

 		
 Versions prior to 2.0

 		
 Frequently-asked questions

 		
 General

 		
 This doesn’t work with custom user models! It crashes as soon as I try to use one!

 		
 How can I support social-media and other auth schemes, like Facebook or GitHub?

 		
 What license is django-registration under?

 		
 What versions of Django and Python are supported?

 		
 I found a bug or want to make an improvement!

 		
 How secure is django-registration?

 		
 How do I run the tests?

 		
 Installation and setup

 		
 How do I install django-registration?

 		
 Does django-registration come with any sample templates I can use right away?

 		
 Configuration

 		
 Do I need to rewrite the views to change the way they behave?

 		
 I don’t want to write my own URLconf because I don’t want to write patterns for all the auth views!

 		
 I don’t like the names you’ve given to the URL patterns!

 		
 I’m using a custom user model; how do I make that work?

 		
 Tips and tricks

 		
 How do I close user signups?

 		
 How do I log a user in immediately after registration or activation?

 		
 How do I manually activate a user?

 		
 How do I delete expired unactivated accounts?

 		
 How do I allow Unicode in usernames?
